说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解 可以直接到文章最后关注获取。
1 . 项目背景
Simple RNN是一种基础的循环神经网络,它能够处理序列数据,例如文本、时间序列等。与传统的前馈神经网络不同,Simple RNN在处理序列时会保留之前的信息,通过隐藏状态(hidden state)传递给下一个时间步,从而能够捕捉到序列中的依赖关系。
本项目使用基于TensorFlow实现简单循环神经网络分类模型(SimpleRNN分类算法)项目实战来解决分类问题。
2 . 数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
|------------|--------------|------------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 标签 |
数据详情如下(部分展示):
3. 数据预处理
3.1 用P andas 工具查看数据
使用Pandas工具的head()方法查看前五行数据:
从上图可以看到,总共有11个字段。
关键代码:
3.2 缺失值统计
使用Pandas工具的info()方法统计每个特征缺失情况:
从上图可以看到,数据不存在缺失值,总数据量为2000条。
关键代码:
3. 3 变量描述性统计分析
通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:
关键代码如下:
4. 探索性数据分析
4 . 1 y变量分类柱状图
用Pandas工具的value_counts().plot()方法进行统计绘图,图形化展示如下:
从上面图中可以看到,分类为0和1的样本,数量基本一致。
4.2 y 变量类型为 1 x1 变量分布直方图
通过Matpltlib工具的hist()方法绘制直方图:
从上图可以看出,x1主要集中在-2到2之间。
4 . 3 相关性分析
通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:
从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。
5 . 特征工程
5 .1 建立特征数据和标签数据
y为标签数据,除 y之外的为特征数据。关键代码如下:
5 .2 数据集拆分
数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:
5 .3 数据样本增维
为满足循环神经网络模型的数据输入要求,需要增加1个维度。
增加维度维度后的训练集与测试集样本形状:
6 . 构建 SimpleRNN 分类 模型
主要使用基于SimpleRNN分类算法,用于目标分类。
6.1 构建模型
|------------|---------------|-------------------------------------|
| 编号 | 模型名称 | 参数 |
| 1 | SimpleRNN分类模型 | u nits =30 |
| 2 | SimpleRNN分类模型 | e pochs =60 |
6. 2 模型摘要信息
6. 3 模型网络结构
6. 4 模型训练集测试集准确率和损失曲线图
7 . 模型评估
7 .1 评估指标及结果
评估指标主要包括准确率、查准率、召回率、F1分值等等。
|---------------|--------------|-------------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| SimpleRNN分类模型 | 准确率 | 0.9525 |
| SimpleRNN分类模型 | 查准率 | 0.9302 |
| SimpleRNN分类模型 | 召回率 | 0.9804 |
| SimpleRNN分类模型 | F1分值 | 0.9547 |
从上表可以看出,F1分值为0.9547,说明此模型效果良好。
关键代码如下:
7 .2 分类报告
SimpleRNN分类模型的分类报告:
从上图可以看到,分类类型为0的F1分值为0.95;分类类型为1的F1分值为0.95;整个模型的准确率为0.95。
7. 3 混淆矩阵
从上图可以看出,实际为0预测不为0的 有15个样本;实际为1预测不为1的 有4个样本,整体预测准确率良好。
8 . 结论与展望
综上所述,本项目采用了基于TensorFlow实现简单循环神经网络分类模型(SimpleRNN分类算法),最终证明了我们提出的模型效果良好。