【论文笔记】xGen-MM (BLIP-3): A Family of Open Large Multimodal Models

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
作者 : Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yutong Dai, Michael S Ryoo, Shrikant Kendre, Jieyu Zhang, Can Qin, Shu Zhang, Chia-Chih Chen, Ning Yu, Juntao Tan, Tulika Manoj Awalgaonkar, Shelby Heinecke, Huan Wang, Yejin Choi, Ludwig Schmidt, Zeyuan Chen, Silvio Savarese, Juan Carlos Niebles, Caiming Xiong, Ran Xu
arXiv : https://arxiv.org/abs/2408.08872
项目主页 : https://www.salesforceairesearch.com/opensource/xGen-MM/index.html

摘要

本报告介绍了xGen-MM (也称为BLIP-3),这是一个用于开发大型多模态模型(LMMs)的框架。

该框架包括精心挑选的数据集、训练方案、模型架构以及一系列LMMs。

xGen-MM,即xGen-MultiModal,扩展了Salesforce xGen在基础AI模型上的计划。

我们的模型在各种任务中进行了严格的评估,包括单图和多图基准测试。

我们的预训练基础模型展现出强大的上下文学习能力,而指令微调模型在类似规模的开放源代码LMMs中表现出竞争力。

此外,我们引入了一个使用DPO进行安全微调的模型,旨在减轻如幻觉等有害行为并提高安全性。

我们将我们的模型、精心挑选的大规模数据集以及微调代码库开源,以促进LMM研究的进一步发展。

模型架构

  • LLM: Phi-3-mini
  • Token Sampler: Perceiver Resampler
  • Vision Transformer: SigLIP ViT

训练

Pre-training

  • Interleaved Dataset Mixture
    • MINT-1T
    • OBELICS
  • Caption Dataset Mixture
    • BLIP3-KALE
    • BLIP3-OCR-200M
    • BLIP3-GROUNDING-50M
    • Other Public Datasets Mixture
      • Datacomp-1B image-text pairs
      • CC12M
      • CC3M
      • VG
      • SBU

Supervised Fine-tuning (SFT)

多模态对话、图像描述、视觉问答、图表/文档理解、科学和数学。除了多模态图像-文本数据外,还混合了纯文本指令数据。共100万个公开可用的指令微调样本。

Interleaved Multi-Image Supervised Fine-tuning

多图/图文交错数据: MANTIS、MMDU

为了防止模型退化,混合了SFT阶段训练数据的子集。

Post-training

  • Improving Truthfulness by D irect P reference Optimization: VLFeedback
  • Improving Harmlessness by Safety Fine-tuning: VLGuard

主实验

Pre-training

Supervised Fine-tuning

Post-training

消融实验

Pre-training Ablation

SFT Ablation

总结

我们引入了xGen-MM(BLIP-3),这是一个用于在精心挑选的大型数据集混合体上训练一系列开源大型多模态模型的综合框架。

xGen-MM(BLIP-3)展示了诸如多模态情境学习等新兴能力,并在多模态基准测试中取得了令人印象深刻的成果。

通过开源xGen-MM(BLIP-3)、我们的精选数据集以及我们的SFT微调代码库,我们希望赋予研究社区可访问的多模态基础模型和数据集,使从业者能够进一步探索并提升大型多模态模型(LMMs)的潜力和新兴能力。

相关推荐
有Li1 小时前
基于联邦学习与神经架构搜索的可泛化重建:用于加速磁共振成像|文献速递-最新医学人工智能文献
论文阅读·人工智能·文献·医学生
DogDaoDao11 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
车骑14 小时前
一个支持国外技术聚合翻译自动化的开源脚本
大模型·github
吏部侍郎14 小时前
腾讯终于对Claude code下手了?我拿它跑完一个真实项目,结果有点意外…
大模型·ai编程
居7然16 小时前
解锁AI智能体:上下文工程如何成为架构落地的“魔法钥匙”
人工智能·架构·大模型·智能体·上下文工程
川川子溢17 小时前
【论文阅读】MEDDINOV3:如何调整视觉基础模型用于医学图像分割?
论文阅读
mask哥17 小时前
详解mcp以及agen架构设计与实现
java·微服务·flink·大模型·ai agent·springai·mcp
Xy-unu1 天前
[VL|RIS] RSRefSeg 2
论文阅读·人工智能·transformer·论文笔记·分割
张较瘦_1 天前
[论文阅读] 告别“数量为王”:双轨道会议模型+LS,破解AI时代学术交流困局
论文阅读·人工智能
贝塔实验室1 天前
两种常用的抗单粒子翻转动态刷新方法
论文阅读·经验分享·笔记·科技·学习·程序人生·fpga开发