数学建模汇总

模型汇总

数学建模算法汇总

数据分析

数据的统计描述和分析

数据处理

用Python进行数据挖掘(数据预处理)
Python机器学习库SKLearn:数据预处理
在Python中进行数据清洗和预处理缺失值处理缺失值补全

灵敏度分析

研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。它通过改变模型中的一个或多个输入参数,观察输出结果的变化情况,来评估模型对于输入参数的敏感性。

一般用在线性规划模型
深入理解灵敏度分析与鲁棒性分析:技术实践与应用

绘图

【数学建模绘图系列教程】:一、图表类型和工具选择
使用matplotlib绘制柱状图

热力图

用 seaborn 绘制

相关性矩阵

数据可视化之热力图&相关系数图(原理+Python代码)

模型评价

灵敏度分析、模型检验和误差分析、模型的评价改进和推广

python 复制代码
from pulp import *

# 创建一个线性规划问题
prob = LpProblem("Maximize_Profit", LpMaximize)

# 定义决策变量
x = LpVariable.dicts("Area", [(i, j) for i in range(num_fields) for j in range(num_crops)], 0, None)
y = LpVariable.dicts("Area_Greenhouse", [(k, l) for k in range(num_greenhouses) for l in range(num_crops)], 0, None)

# 定义目标函数
profit = lpSum([prices[j] * yields[j] * x[i, j] for i in range(num_fields) for j in range(num_crops)])
profit += lpSum([prices[l] * yields[l] * y[k, l] for k in range(num_greenhouses) for l in range(num_crops)])
prob += profit

# 添加约束条件
for i in range(num_fields):
    prob += lpSum([x[i, j] for j in range(num_crops)]) <= field_areas[i]

for k in range(num_greenhouses):
    prob += lpSum([y[k, l] for l in range(num_crops)]) <= greenhouse_area

# 求解模型
prob.solve()

# 打印结果
for v in prob.variables():
    print(f"{v.name} = {v.varValue}")

print(f"Total Profit = {value(prob.objective)}")
python 复制代码
from pulp import *
import numpy as np

# 创建线性规划问题
prob = LpProblem("Maximize_Profit", LpMaximize)

# 定义参数(示例)
fields = range(34)
crops = range(10)  # 假设有10种作物
greenhouses = range(16)
years = range(2024, 2031)

# 假设的数据
areas = {i: 1201/34 for i in fields}  # 每个地块的面积
prices = {j: 10 + 0.5 * j for j in crops}  # 作物价格(示例)
yields = {j: 2 + 0.1 * j for j in crops}  # 作物亩产量(示例)
costs = {j: 5 + 0.3 * j for j in crops}  # 作物种植成本(示例)

# 定义决策变量
x = LpVariable.dicts("Area_Field", [(i, j, t) for i in fields for j in crops for t in years], 0, None)
y = LpVariable.dicts("Area_Greenhouse", [(k, j, t) for k in greenhouses for j in crops for t in years], 0, None)

# 目标函数
profit = lpSum([prices[j] * yields[j] * x[i, j, t] - costs[j] * x[i, j, t] for i in fields for j in crops for t in years])
profit += lpSum([prices[j] * yields[j] * y[k, j, t] - costs[j] * y[k, j, t] for k in greenhouses for j in crops for t in years])
prob += profit

# 添加约束条件
for i in fields:
    for t in years:
        prob += lpSum([x[i, j, t] for j in crops]) <= areas[i]

for k in greenhouses:
    for t in years:
        prob += lpSum([y[k, j, t] for j in crops]) <= 0.6  # 每个大棚的面积为0.6亩

# 求解模型
prob.solve()

# 打印结果
for v in prob.variables():
    print(f"{v.name} = {v.varValue}")

print(f"Total Profit = {value(prob.objective)}")
相关推荐
ECT-OS-JiuHuaShan4 小时前
麻烦是第一推动力,不厌其烦就是负熵流
开发语言·人工智能·数学建模·学习方法·量子计算
TTGGGFF9 小时前
MATLAB仿真:从理论到实操的控制系统建模实验
开发语言·数学建模·matlab
Cathy Bryant1 天前
傅里叶变换(一):简介
笔记·算法·数学建模·信息与通信·傅里叶分析
您好啊数模君1 天前
数学建模优秀论文算法-蚁群算法
数学建模·蚁群算法
yBmZlQzJ2 天前
财运到内网穿透域名解析技术机制与中立评估
运维·经验分享·docker·容器·1024程序员节
nnerddboy2 天前
美赛备战:数学建模中的微分方程问题2.Python代码实现
数学建模
yBmZlQzJ2 天前
内网穿透工具通过端口转发实现内外网通信
运维·经验分享·docker·容器·1024程序员节
老歌老听老掉牙2 天前
符号计算中的表达式等价性验证:数学等价性与计算简化策略分析
python·数学建模·sympy
老歌老听老掉牙2 天前
砂轮轮廓的数学建模与可视化分析
python·数学建模·sympy·砂轮