[NeetCode 150] Find Median in a Data Stream

Find Median in a Data Stream

The median is the middle value in a sorted list of integers. For lists of even length, there is no middle value, so the median is the mean of the two middle values.

For example:

For arr = [1,2,3], the median is 2.

For arr = [1,2], the median is (1 + 2) / 2 = 1.5

Implement the MedianFinder class:

MedianFinder() initializes the MedianFinder object.

void addNum(int num) adds the integer num from the data stream to the data structure.

double findMedian() returns the median of all elements so far.

Example 1:

Input:
["MedianFinder", "addNum", "1", "findMedian", "addNum", "3" "findMedian", "addNum", "2", "findMedian"]

Output:
[null, null, 1.0, null, 2.0, null, 2.0]

Explanation:

MedianFinder medianFinder = new MedianFinder();

medianFinder.addNum(1); // arr = [1]

medianFinder.findMedian(); // return 1.0

medianFinder.addNum(3); // arr = [1, 3]

medianFinder.findMedian(); // return 2.0

medianFinder.addNum(2); // arr[1, 2, 3]

medianFinder.findMedian(); // return 2.0

Constraints:

-100,000 <= num <= 100,000

findMedian will only be called after adding at least one integer to the data structure.

Solution

We can divide this ordered list into 2 parts. Maintain the first half via a max-heap and maintain the second half via a min-heap. If we keep the balance between the size of these two heaps, we can guarantee that the median is always at the top of them.

To do this, we need to adjust the size of heaps after each addNum. As we only add 1 number once, we only need to move at most 1 element from one heap to another.

Code

heapq is a good way to realize heap (or say priority queue).

py 复制代码
class MedianFinder:

    def __init__(self):
        self.first = [(100001, -100001)]
        self.second = [(100001, 100001)]
        

    def addNum(self, num: int) -> None:
        first_max = self.first[0][1]
        second_min = self.second[0][1]
        if num <= first_max:
            heapq.heappush(self.first, (-num, num))
        else:
            heapq.heappush(self.second, (num, num))
        if len(self.first) > len(self.second) + 1:
            temp = heapq.heappop(self.first)
            heapq.heappush(self.second, (-temp[0], temp[1]))
        if len(self.second) > len(self.first):
            temp = heapq.heappop(self.second)
            heapq.heappush(self.first, (-temp[0], temp[1]))
        

    def findMedian(self) -> float:
        if len(self.first) == len(self.second):
            return (self.first[0][1]+self.second[0][1])/2
        else:
            return self.first[0][1]
        
        
相关推荐
feilieren10 分钟前
leetcode - 684. 冗余连接
java·开发语言·算法
余~1853816280020 分钟前
矩阵系统源码搭建,OEM贴牌技术
网络·人工智能·线性代数·算法·矩阵
Tianwen_Burning30 分钟前
Halcon相机外参自理解
算法
dawn1912282 小时前
Java 中的正则表达式详解
java·开发语言·算法·正则表达式·1024程序员节
黑不拉几的小白兔2 小时前
PTA L1系列题解(C语言)(L1_097 -- L1_104)
数据结构·算法·1024程序员节
南城花随雪。2 小时前
蚁群算法(Ant Colony Optimization)详细解读
算法
秋说2 小时前
【数据结构 | PTA】懂蛇语
数据结构·c++
lLinkl2 小时前
Java面试经典 150 题.P27. 移除元素(002)
算法
tangguofeng3 小时前
合并排序算法(C语言版)
算法
Ptilopsyis3 小时前
17、电话号码的字母组合-cangjie
leetcode·cangjie