[NeetCode 150] Find Median in a Data Stream

Find Median in a Data Stream

The median is the middle value in a sorted list of integers. For lists of even length, there is no middle value, so the median is the mean of the two middle values.

For example:

For arr = [1,2,3], the median is 2.

For arr = [1,2], the median is (1 + 2) / 2 = 1.5

Implement the MedianFinder class:

MedianFinder() initializes the MedianFinder object.

void addNum(int num) adds the integer num from the data stream to the data structure.

double findMedian() returns the median of all elements so far.

Example 1:

复制代码
Input:
["MedianFinder", "addNum", "1", "findMedian", "addNum", "3" "findMedian", "addNum", "2", "findMedian"]

Output:
[null, null, 1.0, null, 2.0, null, 2.0]

Explanation:

MedianFinder medianFinder = new MedianFinder();

medianFinder.addNum(1); // arr = [1]

medianFinder.findMedian(); // return 1.0

medianFinder.addNum(3); // arr = [1, 3]

medianFinder.findMedian(); // return 2.0

medianFinder.addNum(2); // arr[1, 2, 3]

medianFinder.findMedian(); // return 2.0

Constraints:

复制代码
-100,000 <= num <= 100,000

findMedian will only be called after adding at least one integer to the data structure.

Solution

We can divide this ordered list into 2 parts. Maintain the first half via a max-heap and maintain the second half via a min-heap. If we keep the balance between the size of these two heaps, we can guarantee that the median is always at the top of them.

To do this, we need to adjust the size of heaps after each addNum. As we only add 1 number once, we only need to move at most 1 element from one heap to another.

Code

heapq is a good way to realize heap (or say priority queue).

py 复制代码
class MedianFinder:

    def __init__(self):
        self.first = [(100001, -100001)]
        self.second = [(100001, 100001)]
        

    def addNum(self, num: int) -> None:
        first_max = self.first[0][1]
        second_min = self.second[0][1]
        if num <= first_max:
            heapq.heappush(self.first, (-num, num))
        else:
            heapq.heappush(self.second, (num, num))
        if len(self.first) > len(self.second) + 1:
            temp = heapq.heappop(self.first)
            heapq.heappush(self.second, (-temp[0], temp[1]))
        if len(self.second) > len(self.first):
            temp = heapq.heappop(self.second)
            heapq.heappush(self.first, (-temp[0], temp[1]))
        

    def findMedian(self) -> float:
        if len(self.first) == len(self.second):
            return (self.first[0][1]+self.second[0][1])/2
        else:
            return self.first[0][1]
        
        
相关推荐
Sylvia-girl24 分钟前
数据结构之复杂度
数据结构·算法
CQ_YM38 分钟前
数据结构之队列
c语言·数据结构·算法·
VekiSon1 小时前
数据结构与算法——树和哈希表
数据结构·算法
xu_yule2 小时前
数据结构与算法(1)(第一章复杂度知识点)(大O渐进表示法)
数据结构
大江东去浪淘尽千古风流人物2 小时前
【DSP】向量化操作的误差来源分析及其经典解决方案
linux·运维·人工智能·算法·vr·dsp开发·mr
fish_xk2 小时前
数据结构之排序
数据结构
Unstoppable222 小时前
代码随想录算法训练营第 56 天 | 拓扑排序精讲、Dijkstra(朴素版)精讲
java·数据结构·算法·
potato_may3 小时前
CC++ 内存管理 —— 程序的“五脏六腑”在哪里?
c语言·开发语言·数据结构·c++·内存·内存管理
饕餮怪程序猿3 小时前
A*算法(C++实现)
开发语言·c++·算法
电饭叔3 小时前
不含Luhn算法《python语言程序设计》2018版--第8章14题利用字符串输入作为一个信用卡号之二(识别卡号有效)
java·python·算法