BLIP2部署教程

简单记录一下BLIP2部署的流程

主要遇到的问题还是有墙导致模型权重无法下载

环境安装

本文采用Lavis进行BLIP2的部署

1.pip 安装lavis,这里记得换一下清华源,下载会快一点

pip install salesforce-lavis

通过下方代码判断lavis库是否安装成功

python 复制代码
from lavis.models import model_zoo
print(model_zoo)

2.替换安装的库中权重文件路径

Image Captioning任务为例

  • 修改 lavis/configs/models/blip_caption_base_coco.yaml

    该文件在python lavis库中,如果是通过git安装的,则直接更改对应git 项目文件

    yaml 复制代码
    model:
      arch: blip_caption
      load_finetuned: True
    
      pretrained: "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"
      finetuned: "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP/blip_coco_caption_base.pth"
    
      # vit encoder
      vit_type: "base"
      vit_grad_ckpt: False
      vit_ckpt_layer: 0
      image_size: 384

    pretrainedfinetuned 中的权重文件下载到本地,然后将其替换成权重的绝对路径

  • 运行报错 OSError: Can't load tokenizer for 'bert-base-uncased'. If you were trying to load it from 'https://huggingface.co/models', make sure you don't have a local directory with the same name. Otherwise, make sure 'bert-base-uncased' is the correct path to a dir

    直接命令行通过huggingface镜像运行脚本,从而下载对应bert模型权重
    HF_ENDPOINT=https://hf-mirror.com python 测试脚本.py

    总体思想就是缺少哪个模型权重文件就下载哪个,然后替换成对应绝对路径

    另附Image Captioning任务 测试脚本

    python 复制代码
    import torch
    from lavis.models import load_model_and_preprocess
    from PIL import Image
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # loads BLIP caption base model, with finetuned checkpoints on MSCOCO captioning dataset.
    # this also loads the associated image processors
    model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device)
    # preprocess the image
    # vis_processors stores image transforms for "train" and "eval" (validation / testing / inference)
    raw_image = Image.open("./merlion.png").convert("RGB")
    
    image = vis_processors["eval"](raw_image).unsqueeze(0).to(device)
    # generate caption
    res=model.generate({"image": image})
    print(res)
    # ['a large fountain spewing water into the air']
相关推荐
乐迪信息17 分钟前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全
Dragon水魅20 分钟前
使用 LLaMA Factory 微调一个 Qwen3-0.6B 猫娘
人工智能·语言模型
Deepoch32 分钟前
Deepoc具身模型开发板:农业机器人的“智能升级模块”革命
人工智能·科技·机器人·采摘机器人·农业机器人·具身模型·deepoc
paopao_wu34 分钟前
声音克隆与情感合成:IndexTTS2让AI语音会“演戏”
人工智能
ConardLi1 小时前
AI:我裂开了!现在的大模型评测究竟有多变态?
前端·人工智能·后端
这是你的玩具车吗1 小时前
能和爸妈讲明白的大模型原理
前端·人工智能·机器学习
产品设计大观1 小时前
6个宠物APP原型设计案例拆解:含AI问诊、商城、领养、托运
大数据·人工智能·ai·宠物·墨刀·app原型·宠物app
Codebee1 小时前
Ooder全栈框架:AI理解业务的多字段表单智能布局技术实现
人工智能
weilaikeqi11111 小时前
汪喵灵灵荣获“兴智杯”全国AI创新应用大赛一等奖,彰显AI宠物医疗硬实力
人工智能·百度·宠物
aliprice1 小时前
Target电商平台研究指南:十款实用工具助力全渠道零售与品牌营销分析
人工智能·零售