Hugging Face | 个人使用笔记

一、网站介绍

模型和数据集都是开源

搜索模型是默认按照趋势排序的

二、模型具体页面

三、调用API小练习

模型网站:flux-RealismLora

1.点击View Code 获取参考代码

2.创建一个python文件复制进一个代码编辑器

注意:需要补充最后一行保存代码

3.需要获得个人的hugging face的TOKEN



headers = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}中的hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx替换成上面的值

4.保存,运行

得到生成的图片

可能存在Runtime Error的问题,也不是一定会遇到,跟网络状况有关

5.写一个gradio页面,跟这个flux接口对接

python 复制代码
# 大模型生成代码
import gradio as gr
import requests
import io
from PIL import Image

API_URL = "https://api-inference.huggingface.co/models/XLabs-AI/flux-RealismLora"
headers = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}

def query(prompt):
    payload = {
        "inputs": prompt
    }
    response = requests.post(API_URL, headers=headers, json=payload, timeout=30, verify=False)
    if response.status_code == 200:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        return image
    else:
        return f"Error: {response.status_code} - {response.text}"

# Define the Gradio interface without enable_queue
iface = gr.Interface(
    fn=query,
    inputs="text",
    outputs="image",
    title="Image Generation with Flux Realism Lora",
    description="Enter a prompt to generate an image using the Flux Realism Lora model."
)

# Launch the Gradio app
iface.launch()

网页如图:

注意: 对于 Hugging Face API:

(1)图像生成模型通常返回图像的二进制数据:

python 复制代码
image_bytes = query({
    "inputs": "Astronaut riding a horse",
})
image = Image.open(io.BytesIO(image_bytes))  # 将字节转换为图像

(2)其他类型的模型(如文本生成、情感分析等)可能返回 JSON 格式的响应,其中包含模型输出的详细信息:

python 复制代码
response = requests.post(API_URL, headers=headers, json=payload)
json_response = response.json()  # 解析 JSON 响应

四、以后补充

个人学习笔记 来源:https://www.bilibili.com/list/watchlater?bvid=BV1Mr4MewEY5\&oid=113236728874981![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/d6619abc5e5c4ac7be07af3947eabb96.png)

相关推荐
leafff1233 分钟前
一文了解LLM应用架构:从Prompt到Multi-Agent
人工智能·架构·prompt
山顶听风23 分钟前
分页条初始化
python
无风听海30 分钟前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络
艾莉丝努力练剑35 分钟前
【C++:红黑树】深入理解红黑树的平衡之道:从原理、变色、旋转到完整实现代码
大数据·开发语言·c++·人工智能·红黑树
九章云极AladdinEdu39 分钟前
论文分享 | BARD-GS:基于高斯泼溅的模糊感知动态场景重建
人工智能·新视角合成·动态场景重建·运动模糊处理·3d高斯泼溅·模糊感知建模·真实世界数据集
希露菲叶特格雷拉特1 小时前
PyTorch深度学习笔记(二十)(模型验证测试)
人工智能·pytorch·笔记
NewsMash1 小时前
PyTorch之父发离职长文,告别Meta
人工智能·pytorch·python
IT_陈寒1 小时前
Python 3.12新特性实测:10个让你的代码提速30%的隐藏技巧 🚀
前端·人工智能·后端
Ztop1 小时前
GPT-5.1 已确认!OpenAI下一步推理升级?对决 Gemini 3 在即
人工智能·gpt·chatgpt
硅农深芯1 小时前
如何使用ptqt5实现进度条的动态显示
开发语言·python·qt