Flux-IP-Adapter-V2版本发布,效果实测!是惊喜还是意外?

更多AI教程:AI教程_深度学习入门指南 - 站长素材

简介

XLAB团队发布了FLUX.1-dev模型的最新IP-Adapter V2版本。这是在之前IP-Adapter V1版本上的进一步升级。新版本的IP-Adapter模型在保持图像纵横比的同时,分别在512x512分辨率下训练了150k步,在1024x1024分辨率下训练了350k步。

官方提示:目前处于测试阶段。 我们不保证您会立即获得好结果,可能需要更多尝试才能获得结果。

使用方法

我们管理器安装或者更新他们的节点:https://github.com/XLabs-AI/x-flux-comfyui

然后我们下载clip-vit-large-patch14.safetensors和fux-ip-adapte模型。

clip-vit-large-patch14.safetensors **:**下载并放置目录 ComfyUI/models/clip_vision/ 下

下载地址为:https://huggingface.co/openai/clip-vit-large-patch14/tree/main

fux-ip-adapte **:**下载模型并放置目录 ComfyUI/models/xlabs/ipadapters/ 下

下载地址为:https://huggingface.co/XLabs-AI/flux-ip-adapter/tree/mai

官方示例

一张图片参考+提示词:

两张图片参考+提示词:

效果实测

在模型下载地址里有工作流的下载链接,官方提供的默认工作流是融合了两张图的风格,我们先忽略一个,使用一张图进行参考

测试一:我这里参考一张金色的雕像+提示词:A street cat.权重 1

风格倒是参考了,只是提示词没体现,

我认为是权重太高了就调成 0.8 后才有效果

测试二:参考人物+提示词:holding an iconic starbucks cup ofcoffee,个人感觉参考的不太明显,一些首饰,衣服的质感都没参考到

测试三:参考两张图片+提示词:a man ,权重 0.8,不仅提示词没起作用,图一的风格也没参考

测试四:一张参考图+提示词:a man,权重 0.8,抽卡 5 次才得到一个比较接近的风格

权重 0.7 ,提示词换成:a car 。效果还行

总结

感觉效果一言难尽,出图非常不稳定,效果参差不齐时好时坏,提示词遵循效果也不好,在参考单张图片时有点效果,在参考两张图片时效果一般,不推荐使用。

相关推荐
千里马也想飞3 分钟前
人工智能在医疗领域的应用与研究论文写作实操:AI辅助快速完成框架+正文创作
人工智能
Rorsion8 分钟前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
勾股导航16 分钟前
K-means
人工智能·机器学习·kmeans
liliangcsdn16 分钟前
Diff2Flow中扩散和流匹配的对齐探索
人工智能
SmartBrain21 分钟前
战略洞察:以AI为代表的第四次工业革命
人工智能·语言模型·aigc
熬夜敲代码的小N26 分钟前
基于CANN生态与OPS-NN仓库:AIGC模型高效部署与核心解析
aigc
一个处女座的程序猿31 分钟前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay37 分钟前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向1 小时前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心1 小时前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai