论文阅读:三星-TinyClick

《Single-Turn Agent for Empowering GUI Automation》

赋能GUI自动化的单轮代理

摘要

我们介绍了一个用于图形用户界面(GUI)交互任务的单轮代理,使用了视觉语言模型Florence-2-Base。该代理的主要任务是识别与用户指令相对应的UI元素的屏幕坐标。

它在Screenspot和OmniAct上表现出强大的性能,同时保持了0.27B参数的紧凑规模和最低的延迟。

相关的改进来自于多任务训练和基于MLLM的数据增强。手动注释的语料库很少,但我们表明,MLLM增强可能产生更好的结果。

在Screenspot和OmniAct平台上,我们的模型超过了专门针对GUI的模型(如SeeClick)和大模型(如GPT-4V)。

模型:hugging-face.co/Samsung/TinyClick.

下游任务的示例命令。TinyClick 接收屏幕截图和用户指令,然后预测 UI 元素的边界框和动作。

训练情况

模型开源: hugging-face.co/Samsung/TinyClick

Florence2:一个定位和检测模型、通过同时使用带注释的图像和自然语言解释,允许适应跨领域。

训练方式

多任务训练

任务类别和目的

我们使用了公开可用的语料库来训练单轮对话智能体,这些语料库主要包含命令和位置(边界框)。

为了准备训练数据,我们使用了现有的MLLM注解或软件元数据,并且也使用我们自己的MLLM管道对数据进行了重新注解。

元素的描述、期望、位置和用途主要基于MLLM注解,而对象检测则使用了Android XML UI元数据。

实验验证了我们的方法的有效性,用更小、更快的模型超越了当前的基线。

任务名称

1.Element captioning

根据屏幕上的位置生成UI元素的描述、目的或操作预期。

2.Element location

根据视觉描述定位UI元素

3.Object detection

检测所有可点击的UI元素

4.Agent action

根据用户指令(command)定位要点击的UI元素或要点击的位置。

5.QA

根据屏幕内容QA

训练数据集

1.WaveUI

2.AMEX

3.Mind2Web

4.GUI Odyssey(not in train)

5.GUI Course

6.AndroidControl

7.ScreenQA

8.WebUI(not use)

9.OmniAct(validation set)

MLLM注解模型标注的方式

InternVL2-26B 标注数据 GUI Course的例子:

你的任务是生成一个预期 expectation ------与红色方框中的UI元素交互后会发生什么。

也就是说

输入是 image、prompt、 包含command和action的input json

输出是 output json


训练任务示例

同一个UI元素 可以 有多个不同的任务,类似 grounding和widget caption的意思

相关推荐
c0d1ng10 小时前
二月第二周周报(论文阅读)
论文阅读
DuHz11 小时前
通过超宽带信号估计位置——论文精读
论文阅读·人工智能·机器学习·自动驾驶·汽车
Biomamba生信基地11 小时前
《Science Advances》11例样本图谱文章,空间转录组揭示特发性肺纤维化病理特征
论文阅读·空间转录组分析
觉醒大王2 天前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
觉醒大王2 天前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
张较瘦_3 天前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
m0_650108243 天前
IntNet:面向协同自动驾驶的通信驱动多智能体强化学习框架
论文阅读·marl·多智能体系统·网联自动驾驶·意图共享·自适应通讯·端到端协同
m0_650108243 天前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
快降重科研小助手3 天前
前瞻与规范:AIGC降重API的技术演进与负责任使用
论文阅读·aigc·ai写作·降重·降ai·快降重
源于花海4 天前
IEEE TIE期刊论文学习——基于元学习与小样本重训练的锂离子电池健康状态估计方法
论文阅读·元学习·电池健康管理·并行网络·小样本重训练