论文阅读:三星-TinyClick

《Single-Turn Agent for Empowering GUI Automation》

赋能GUI自动化的单轮代理

摘要

我们介绍了一个用于图形用户界面(GUI)交互任务的单轮代理,使用了视觉语言模型Florence-2-Base。该代理的主要任务是识别与用户指令相对应的UI元素的屏幕坐标。

它在Screenspot和OmniAct上表现出强大的性能,同时保持了0.27B参数的紧凑规模和最低的延迟。

相关的改进来自于多任务训练和基于MLLM的数据增强。手动注释的语料库很少,但我们表明,MLLM增强可能产生更好的结果。

在Screenspot和OmniAct平台上,我们的模型超过了专门针对GUI的模型(如SeeClick)和大模型(如GPT-4V)。

模型:hugging-face.co/Samsung/TinyClick.

下游任务的示例命令。TinyClick 接收屏幕截图和用户指令,然后预测 UI 元素的边界框和动作。

训练情况

模型开源: hugging-face.co/Samsung/TinyClick

Florence2:一个定位和检测模型、通过同时使用带注释的图像和自然语言解释,允许适应跨领域。

训练方式

多任务训练

任务类别和目的

我们使用了公开可用的语料库来训练单轮对话智能体,这些语料库主要包含命令和位置(边界框)。

为了准备训练数据,我们使用了现有的MLLM注解或软件元数据,并且也使用我们自己的MLLM管道对数据进行了重新注解。

元素的描述、期望、位置和用途主要基于MLLM注解,而对象检测则使用了Android XML UI元数据。

实验验证了我们的方法的有效性,用更小、更快的模型超越了当前的基线。

任务名称

1.Element captioning

根据屏幕上的位置生成UI元素的描述、目的或操作预期。

2.Element location

根据视觉描述定位UI元素

3.Object detection

检测所有可点击的UI元素

4.Agent action

根据用户指令(command)定位要点击的UI元素或要点击的位置。

5.QA

根据屏幕内容QA

训练数据集

1.WaveUI

2.AMEX

3.Mind2Web

4.GUI Odyssey(not in train)

5.GUI Course

6.AndroidControl

7.ScreenQA

8.WebUI(not use)

9.OmniAct(validation set)

MLLM注解模型标注的方式

InternVL2-26B 标注数据 GUI Course的例子:

你的任务是生成一个预期 expectation ------与红色方框中的UI元素交互后会发生什么。

也就是说

输入是 image、prompt、 包含command和action的input json

输出是 output json


训练任务示例

同一个UI元素 可以 有多个不同的任务,类似 grounding和widget caption的意思

相关推荐
番茄大王sc1 天前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
码界奇点1 天前
基于Gin与GORM的若依后台管理系统设计与实现
论文阅读·go·毕业设计·gin·源代码管理
森诺Alyson2 天前
前沿技术借鉴研讨-2026.1.29(时间序列预测)
论文阅读·人工智能·经验分享·深度学习·论文笔记
有Li2 天前
多视图深度学习乳腺X线摄影分类技术:图和Transformer架构的探究/文献速递-基于人工智能的医学影像技术
论文阅读·深度学习·文献·医学生
数说星榆1813 天前
前后端分离开发流程-泳道图设计与应用
论文阅读·职场和发展·毕业设计·流程图·职场发展·论文笔记·毕设
数说星榆1813 天前
项目管理流程图-泳道图模板免费下载
论文阅读·毕业设计·流程图·论文笔记·毕设
程途拾光1583 天前
产品功能验收泳道图-流程图模板下载
论文阅读·职场和发展·毕业设计·流程图·课程设计·论文笔记·毕设
檐下翻书1733 天前
招聘SOP流程图-泳道图模板详细教程
论文阅读·毕业设计·流程图·图论·论文笔记·毕设
m0_650108243 天前
UniScene:面向自动驾驶的统一占用率中心驾驶场景生成
论文阅读·自动驾驶·uniscene·训练数据生成·语义占用率生成·多视角视频生成·激光雷达点云生成
蓝田生玉1234 天前
Deepstack论文阅读笔记
论文阅读·笔记