遇到慢查询怎么办?一文解读MySQL 8.0查询分析工具

本文分享自华为云社区《【华为云MySQL技术专栏】MySQL 8.0 EXPLAIN ANALYZE 工具介绍》,作者:GaussDB 数据库。

1. EXPLAIN ANALYZE可以解决什么问题

MySQL 8.0.18 版本开始支持查询分析工具EXPLAIN ANALYZE,该工具不仅会实际执行SQL语句,还会展示SQL语句详细的执行信息,包含执行算子(Iterator)粒度的扫描行数、执行耗时、迭代次数等信息。

EXPLAIN ANALYZE工具是MySQL EXPLAIN FORMAT=TREE 功能的扩展,除了展示执行计划和代价估算之外,还提供了细粒度执行算子的耗时等信息。这使得DBA和开发人员能够基于代价估算和算子实际执行耗时信息,判断执行计划是否合理,并识别出后续的优化点。

2. EXPLAIN ANALYZE如何使用

以TPC-H基准测试中的Q14 查询为例,该SQL为两个表的连接及GROUP BY聚合操作,用于统计发货日志在1996年1月的促销商品收入占比 。

复制代码
select
	100.00 * sum(case
		when p_type like 'PROMO%'
			then l_extendedprice * (1 - l_discount)
		else 0
	end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
from
	lineitem,
	part
where
	l_partkey = p_partkey
	and l_shipdate >= '1996-01-01'
	and l_shipdate < date_add( '1996-01-01', interval '1' month);

通过EXPLAIN FORMAT=TREE语句,可以看出执行计划和代价估算信息:

复制代码
-> Aggregate: sum((lineitem.L_EXTENDEDPRICE * (1 - lineitem.L_DISCOUNT))), sum((case when (part.P_TYPE like 'PROMO%') then (lineitem.L_EXTENDEDPRICE * (1 - lineitem.L_DISCOUNT)) else 0 end))
  -> Nested loop inner join (cost=83997.65 rows=66041)
      -> Filter: ((lineitem.L_SHIPDATE >= DATE'1996-01-01') and (lineitem.L_SHIPDATE < <cache>(('1996-01-01' + interval '1' month)))) (cost=60883.30 rows=66041)
          -> Table scan on lineitem (cost=60883.30 rows=594488)
      -> Single-row index lookup on part using PRIMARY (P_PARTKEY=lineitem.L_PARTKEY) (cost=0.25 rows=1)

通过EXPLAIN ANALYZE语句,可以看出每个算子详细的执行信息,如下:

复制代码
-> Aggregate: sum((lineitem.L_EXTENDEDPRICE * (1 - lineitem.L_DISCOUNT))), sum((case when (part.P_TYPE like 'PROMO%') then (lineitem.L_EXTENDEDPRICE * (1 - lineitem.L_DISCOUNT)) else 0 end)) (actual time=203.753..203.753 rows=1 loops=1)
  -> Nested loop inner join (cost=83997.65 rows=66041) (actual time=0.056..200.386 rows=7884 loops=1)
      -> Filter: ((lineitem.L_SHIPDATE >= DATE'1996-01-01') and (lineitem.L_SHIPDATE < <cache>(('1996-01-01' + interval '1' month)))) (cost=60883.30 rows=66041) (actual time=0.042..183.957 rows=7884 loops=1)
          -> Table scan on lineitem (cost=60883.30 rows=594488) (actual time=0.039..140.993 rows=600572 loops=1)
      -> Single-row index lookup on part using PRIMARY (P_PARTKEY=lineitem.L_PARTKEY) (cost=0.25 rows=1) (actual time=0.002..0.002 rows=1 loops=7884)

相比EXPLAIN FORMAT=TREE,EXPLAIN ANALYZE会实际执行SQL语句,并统计每个算子的详细耗时信息,每个算子额外提供如下信息:

复制代码
(actual time=m_start..m_end rows=m_rows loops=m_loops)
  • m_start: 该算子返回第一行数据的实际时间(毫秒)

  • m_end: 该算子返回所有数据的实际时间(毫秒)

  • m_rows: 该算子实际的返回行数

  • m_loops: 该算子实际的迭代次数

例如,Filter算子过滤lineitem表的L_SHIPDATE字段在 ['1996-01-01', '1996-02-01') 区间的数据。

复制代码
Filter: ((lineitem.L_SHIPDATE >= DATE'1996-01-01') and (lineitem.L_SHIPDATE < <cache>(('1996-01-01' + interval '1' month))))
(cost=60883.30 rows=66041)
(actual time=0.042..183.957 rows=7884 loops=1)

优化器基于统计信息估算出的代价为 60883.30,预测返回行数为 66041;然而,实际执行后发现,真实的返回行数为7884。其中,Filter算子过滤掉了592688行 (600572 - 7884)。迭代次数为1(对应于Nested Loop Join中外表的扫描次数),返回给上层算子(Nested loop inner join)第一行数据的时间为 0.042 毫秒,返回给上层算子所有数据的时间为 183.957 毫秒。

例如,点查算子Single-row index lookup on part using PRIMARY,作为Nested loop inner join的内表,通过条件part.p_partkey = lineitem.l_partkey循环获取满足条件的行。

复制代码
Single-row index lookup on part using PRIMARY (P_PARTKEY=lineitem.L_PARTKEY)
(cost=0.25 rows=1)
(actual time=0.002..0.002 rows=1 loops=7884)

优化器估算出的代价为0.25,预测返回行数为 1;然而,实际执行后发现,真实的返回行数为1,但迭代次数为7884,与外表FILTER算子执行后的结果数据量相等,每次迭代只返回上层算子1行。因此,返回给上层算子(Nested loop inner join)第一行数据的时间和所有数据的时间相等,都是0.002毫秒,可以推算出内表点查的累计耗时为 15.768 毫秒(7884 * 0.002毫秒)。

基于以上分析,我们可以看出该SQL语句执行耗时约200 毫秒,lineitem表的全表扫描耗时约140 毫秒,Filter算子耗时约40 毫秒,part表循环点查约16 毫秒。

3. EXPLAIN ANALYZE源码实现

MySQL 8.0 使用火山执行引擎,火山模型是数据库系统中广泛使用的迭代模型。SQL语句经过查询解析生成抽象语法树(AST),然后经过查询优化,最终生成执行树,执行树的每个节点对应一个执行算子(Iterator)。每个算子提供了Init,Read,End接口,每个算子从子节点获取数据,执行该算子的相关工作,并返回结果给父节点。

以MySQL 8.0.22版本为例,它提供了37个执行算子来处理数据读取、多表连接、聚合操作、数据物化等多个操作场景,每个执行算子都继承自一个基类RowIterator。

例如, TableScanIterator(处理全表扫描)和 NestedLoopIterator(处理2表连接)的类图如图1所示:

图1 TableScanIterator 和 NestedLoopIterator 类图

EXPLAIN ANALYZE 工具的作用是展示SQL语句的执行计划以及详细记录各个算子的执行耗时。在MySQL 8.0中,这一功能的实现是通过新增一个接口模板类TimingIterator,将37个执行算子封装起来,以便统计各个执行算子的详细执行耗时信息。这样做的好处是实现简单,无需对所有算子单独适配,而且不影响非EXPLAIN ANALYZE语句的执行效率。

例如,全表扫描算子TableScanIterator 对应TimingIterator<TableScanIterator>,表连接算子 NestedLoopIterator 对应 TimingIterator<NestedLoopIterator>,其类图如图2所示:

图2 TimingIterator<TableScanIterator> 和 TimingIterator<NestedLoopIterator> 类图

3.1 执行树生成

数据库优化器在确定了最优的访问路径(AccessPath)之后,会通过函数 CreateIteratorFromAccessPath 生成执行树,该函数会依据算子类型,调用NewIterator函数生成对应的算子。

如果是普通DQL(SELECT)语句,则生成对应的算子;如果是 EXPLAIN ANALYZE语句,则生成一个 TimingIterator<RealIterator>Wapper对象,其真实执行算子被保存在 TimingIterator::m_iterator 中。

例如,EXPLAIN ANALYZE语句,TableScanIterator 会生成TimingIterator<TableScanIterator> 算子,NestedLoopIterator 会生成 TimingIterator<NestedLoopIterator> 算子,执行流程如图3所示。

图3 执行树生成流程

3.2 统计算子执行耗时

TimingIterator 模板类的主体实现如下表所示,执行的统计信息记录在几个私有成员变量中。

复制代码
template <class RealIterator>
class TimingIterator final : public RowIterator {
 public:
  bool Init() override;
  int Read() override;
  std::string TimingString() const override; // 打印函数,输出算子执行时间信息

 private:
  uint64_t m_num_rows = 0; // 该算子累计处理的记录数
  uint64_t m_num_init_calls = 0; // 调用 Init 函数的次数
  // 返回第一行的执行时间
  steady_clock::time_point::duration m_time_spent_in_first_row{0}; 
  // 返回所有行的执行时间
  steady_clock::time_point::duration m_time_spent_in_other_rows{0};
  bool m_first_row; // 是否为第一行数据
  RealIterator m_iterator; // 真实的执行算子
};

在SQL语句实际执行过程中,通过 Init 和 Read 函数的调度来记录详细执行信息,具体实现如下:

复制代码
template <class RealIterator>
bool TimingIterator<RealIterator>::Init() {
  ++m_num_init_calls;  // Init 函数的调用次数递增
  steady_clock::time_point start = now();
  bool err = m_iterator.Init(); // 调用真实执行算子的Init函数
  steady_clock::time_point end = now();
  m_time_spent_in_first_row += end - start; // 累计获取第一行数据的时间
  m_first_row = true;
  return err;
}

template <class RealIterator>
int TimingIterator<RealIterator>::Read() {
  steady_clock::time_point start = now();
  int err = m_iterator.Read(); // 调用真实执行算子的Read 函数
  steady_clock::time_point end = now();
  if (m_first_row) {
    m_time_spent_in_first_row += end - start; // 更新获取第一行数据的时间
    m_first_row = false; // 获取第一行数据结束
  } else {
    m_time_spent_in_other_rows += end - start; // 更新获取所有行数据的时间
  }
  if (err == 0) {
    ++m_num_rows; // 刷新该算子累计处理的记录数
  }
  return err;
}

3.3 打印算子执行耗时

SQL语句执行结束后,会调用函数 TimingIterator<RealIterator>::TimingString 打印算子执行耗时信息,调用堆栈信息如下表所示:

复制代码
dispatch_command
  mysql_parse
    mysql_execute_command
      Sql_cmd_dml::execute
        Sql_cmd_dml::execute_inner
          explain_query
            ExplainIterator
              PrintQueryPlan
                ExplainAccessPath
                  TimingIterator<RealIterator>::TimingString

TimingIterator<RealIterator>::TimingString 函数,会基于执行阶段的统计打印以下信息:

  • 该算子返回第一行数据的实际时间(毫秒)

  • 该算子返回所有数据的实际时间(毫秒)

  • 该算子实际的返回行数

  • 该算子实际的迭代次数

4. 总结

综上,我们分析了MySQL 8.0 EXPLAIN ANALYZE命令的使用,并结合源码介绍其实现思路,帮助数据库使用者和开发者更好的使用、理解该功能。

当遇到慢查询时,我们也可借助于EXPLAIN ANALYZE工具观察执行计划是否合理、分析SQL执行的主要耗时点,进而去优化SQL执行。

参考资料

https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-18.html

https://dev.mysql.com/worklog/task/?id=4168

https://dev.mysql.com/doc/refman/8.0/en/using-explain.html


华为开发者空间,汇聚鸿蒙、昇腾、鲲鹏、GaussDB、欧拉等各项根技术的开发资源及工具,致力于为每位开发者提供一台云主机、一套开发工具及云上存储空间,让开发者基于华为根生态创新。点击链接,免费领取您的专属云主机~

点击关注,第一时间了解华为云新鲜技术~

相关推荐
wangchen_01 小时前
MySQL表的查询
数据库·mysql
unicrom_深圳市由你创科技2 小时前
MySQL 全文索引进阶:中文分词配置 + 模糊查询性能优化
mysql·性能优化·中文分词
沐浴露z2 小时前
详细解析 MySQL 性能优化之【索引下推】
数据库·mysql·性能优化
程序员卷卷狗2 小时前
联合索引的最左前缀原则与失效场景
java·开发语言·数据库·mysql
敖云岚4 小时前
【疑难解答】MySQL 报错 Public Key Retrieval is not allowed
数据库·mysql
l1t5 小时前
把ITPUB newkid先生编写的Oracle语法数独求解SQL改写成DuckDB
数据库·人工智能·sql·oracle·duckdb
ヾChen5 小时前
MySQL——增删改查操作
数据库·sql·物联网·学习·mysql
0和1的舞者5 小时前
《MySQL数据库进阶(九):数据库备份与恢复(二)》
数据库·mysql·oracle·程序员·策略模式·备份与恢复
稻香味秋天5 小时前
MySQL和DB2在SQL语法上的差异
数据库·sql
努力学习的小廉5 小时前
初识MYSQL —— 事务
android·mysql·adb