OpenCV视觉分析之目标跟踪(5)目标跟踪类TrackerMIL的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

MIL 算法以在线方式训练分类器,以将目标从背景中分离出来。多重实例学习(Multiple Instance Learning)通过在线学习避免了跟踪中的漂移问题,从而实现了更稳健的跟踪效果。该实现基于文献[14]。原始代码可以在以下网址找到:http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml

cv::TrackerMIL 是 OpenCV 中用于目标跟踪的一个类,它实现了 MIL(Multiple Instance Learning)算法。MIL 跟踪器是一种基于在线学习的目标跟踪方法,可以在视频序列中动态地调整其模型以适应目标的变化。

MIL 跟踪器的特点

  • 在线学习:能够在跟踪过程中不断调整和优化模型。
  • 鲁棒性强:对遮挡、光照变化等有一定的鲁棒性。
  • 适应性强:能够适应目标外观的变化。

如何使用 cv::TrackerMIL

  • 创建 cv::TrackerMIL 对象:

    • 使用 cv::TrackerMIL::create() 创建一个 cv::Tracker 指针对象。
  • 加载模型(可选):

    • 如果有预训练模型文件,可以使用 loadModel 方法加载模型。
  • 初始化跟踪器:

    • 使用 init 方法初始化跟踪器,并提供初始帧和目标区域。
  • 更新跟踪器:

    • 使用 update 方法在后续帧中更新跟踪结果。

    代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 读取视频文件
    cv::VideoCapture cap( 0 );
    if ( !cap.isOpened() )
    {
        std::cout << "Error opening video file" << std::endl;
        return -1;
    }

    // 读取第一帧
    cv::Mat frame;
    cap >> frame;
    if ( frame.empty() )
    {
        std::cout << "Error reading first frame" << std::endl;
        return -1;
    }

    // 选择目标区域
    cv::Rect2d bbox = cv::selectROI( "Select ROI", frame, false, false );
    if ( bbox.width <= 0 || bbox.height <= 0 )
    {
        std::cout << "No ROI selected" << std::endl;
        return -1;
    }

    // 创建 TrackerMIL 对象
    cv::Ptr< cv::Tracker > tracker = cv::TrackerMIL::create();

    // 加载模型(如果有的话)
    // std::string modelPath = "path/to/mil_model.dat";
    // if (!tracker->loadModel(modelPath)) {
    //     std::cout << "Failed to load model: " << modelPath << std::endl;
    //     return -1;
    // }

    // 初始化跟踪器
    tracker->init( frame, bbox );
    
    // 跟踪目标
    while ( true )
    {
        cap >> frame;
        if ( frame.empty() )
        {
            break;
        }

        // 更新跟踪结果
        cv::Rect newBox;
        bool ok = tracker->update( frame, newBox );

        // 绘制边界框
        if ( ok )
        {
            cv::rectangle( frame, newBox, cv::Scalar( 0, 255, 0 ), 2, 1 );
        }
        else
        {
            cv::rectangle( frame, newBox, cv::Scalar( 0, 0, 255 ), 2, 1 );
        }

        // 显示结果
        cv::imshow( "Tracking", frame );
        if ( cv::waitKey( 1 ) >= 0 )
        {
            break;
        }
    }

    return 0;
}

运行结果

跟踪一个笔帽

相关推荐
宸津-代码粉碎机1 小时前
LLM 模型部署难题的技术突破:从轻量化到分布式推理的全栈解决方案
java·大数据·人工智能·分布式·python
乌恩大侠6 小时前
自动驾驶的未来:多模态传感器钻机
人工智能·机器学习·自动驾驶
光锥智能7 小时前
AI办公的效率革命,金山办公从未被颠覆
人工智能
GetcharZp7 小时前
爆肝整理!带你快速上手LangChain,轻松集成DeepSeek,打造自己的AI应用
人工智能·llm·deepseek
猫头虎8 小时前
新手小白如何快速检测IP 的好坏?
网络·人工智能·网络协议·tcp/ip·开源·github·php
GeeJoe8 小时前
凡人炼丹传之 · 我让 AI 帮我训练了一个 AI
人工智能·机器学习·llm
小和尚同志8 小时前
Dify29. 为你的 Dify API 穿层衣服吧
人工智能·aigc
不会学习的小白O^O9 小时前
神经网络----卷积层(Conv2D)
人工智能·深度学习·神经网络
bastgia9 小时前
Transformer终结者?Google DeepMind新架构实现2倍推理速度和一半内存占用
人工智能·llm