BERT,RoBERTa,Ernie的理解

BERT

  • 全称:Bidirectional Encoder Representations from Transformers。可以理解为 "基于 Transformer 的双向编码器表示"。
  • 含义:是一种用于语言表征的预训练模型。它改变了以往传统单向语言模型预训练的方式,能够联合左侧和右侧的上下文信息,从未标记文本中预训练出一个深度双向表示模型。这使得它可以更好地理解文本的语义和语境,在众多自然语言处理任务中表现出色,如问答、文本分类、文本摘要、情感分析等。
  • 应用场景:被广泛应用于自然语言处理的各种下游任务中,经过微调后可以快速适应不同的具体业务需求。例如在智能客服、信息检索、机器翻译等领域都有重要的应用。

RoBERTa

  • 含义:Robustly Optimized BERT Pretraining Approach 的缩写,即 "鲁棒优化的 BERT 预训练方法"。
  • 由来:是由 Facebook 人工智能研究院对 Google 的 BERT 模型进行改进后得到的一种预训练语言模型。它在训练过程中对 BERT 的一些训练策略和超参数进行了优化,从而提高了模型的性能。
  • 特点:相比 BERT,RoBERTa 采用了动态掩码、去除下一句预测目标等改进措施,在训练过程中使用了更大的批次和更多的数据,因此在各种自然语言处理任务上取得了更好的效果。它在处理长文本、复杂语言结构等方面具有更强的能力,对于一些对语言理解要求较高的任务,如阅读理解、文本生成等,表现尤为突出。

Ernie

  • 百度的 Ernie:百度推出的知识增强大语言模型,全称为 Enhanced Representation through Knowledge Integration,即 "通过知识融合增强的表示"。它引入了多源数据和知识图谱等外部知识,增强了模型对语言的理解和生成能力,能够处理复杂的自然语言处理任务,如智能写作、智能问答、智能对话等。
相关推荐
XianxinMao15 分钟前
2024大模型双向突破:MoE架构创新与小模型崛起
人工智能·架构
Francek Chen26 分钟前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
pchmi1 小时前
C# OpenCV机器视觉:红外体温检测
人工智能·数码相机·opencv·计算机视觉·c#·机器视觉·opencvsharp
认知作战壳吉桔1 小时前
中国认知作战研究中心:从认知战角度分析2007年iPhone发布
大数据·人工智能·新质生产力·认知战·认知战研究中心
软件公司.乐学2 小时前
安全生产算法一体机定制
人工智能·安全
好评笔记2 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
kcarly2 小时前
知识图谱都有哪些常见算法
人工智能·算法·知识图谱
dddcyy2 小时前
利用现有模型处理面部视频获取特征向量(3)
人工智能·深度学习
Fxrain2 小时前
[Computer Vision]实验三:图像拼接
人工智能·计算机视觉
2301_780356702 小时前
为医院量身定制做“旧改”| 全视通物联网智慧病房
大数据·人工智能·科技·健康医疗