【大数据】ClickHouse常见的表引擎及建表语法

ClickHouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎。接下来我们就仔细了解下MergeTree 及该系列的其他引擎的使用场景及建表语法。

MergeTree

MergeTree 系列的引擎被设计用于插入极大量的数据到一张表当中。数据可以以数据片段的形式一个接着一个的快速写入,数据片段在后台按照一定的规则进行合并。相比在插入时不断修改(重写)已存储的数据,这种策略会高效很多。

特点:

  • 存储的数据按主键排序。
  • 如果指定了 分区键 的话,可以使用分区
  • 支持数据副本(ReplicatedMergeTree 系列的表提供了数据副本功能)
  • 支持数据采样

建表语句

java 复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],
    ...
    INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1,
    INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2
) ENGINE = MergeTree()
ORDER BY expr
[PARTITION BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[TTL expr [DELETE|TO DISK 'xxx'|TO VOLUME 'xxx'], ...]
[SETTINGS name=value, ...]

ReplacingMergeTree

相对于MergeTree,它会用最新的数据覆盖具有相同主键的重复项。删除老数据的操作是在分区异步merge的时候进行处理,合并会在后台一个不确定的时间进行,因此你无法预先作出计划。有一些数据可能仍未被处理,只有同一个分区的数据才会被去重,分区间及shard间重复数据不会被去重,所以应用侧想要获取到最新数据,需要配合argMax函数一起使用。

建表语法

java 复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = ReplacingMergeTree([ver])
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

SummingMergeTree

当合并SummingMergeTree表的数据片段时,ClickHouse会把所有具有相同主键的行进行汇总,将同一主键的行替换为包含sum后的一行记录。如果主键的组合方式使得单个键值对应于大量的行,则可以显著的减少存储空间并加快数据查询的速度。

建表语法

java 复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = SummingMergeTree([columns])
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

AggregatingMergeTree

该引擎继承自MergeTree,并改变了数据片段的合并逻辑。ClickHouse会将一个数据片段内所有具有相同主键(准确的说是排序键)的行替换成一行,这一行会存储一系列聚合函数的状态。可以使用AggregatingMergeTree表引擎来做增量数据的聚合统计,包括物化视图的数据聚合

建表语法

java 复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = AggregatingMergeTree()
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[TTL expr]
[SETTINGS name=value, ...]

CollapsingMergeTree

在创建时与MergeTree基本一样,除了最后多了一个参数,需要指定Sign位(必须是Int8类型)。CollapsingMergeTree会异步地删除(折叠)除了特定列Sign1和-1值以外的所有字段的值重复的行。

建表语法

java 复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = CollapsingMergeTree(sign)
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

VersionedCollapsingMergeTree

继承自 MergeTree 并将折叠行的逻辑添加到合并数据部分的算法中,是CollapsingMergeTree的升级,使用不同的collapsing算法,该算法允许使用多个线程以任何顺序插入数据。特别是, Version 列有助于正确折叠行,即使它们以错误的顺序插入。 相比之下, CollapsingMergeTree 只允许严格连续插入。

建表语法

java 复制代码
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = VersionedCollapsingMergeTree(sign, version)
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

Replicated*MergeTre

只有Replicated*MergeTree系列引擎是上面介绍的引擎的多副本版本,为了提升数据和服务的可靠性,建议使用副本引擎:

ReplicatedMergeTree

ReplicatedSummingMergeTree

ReplicatedReplacingMergeTree

ReplicatedAggregatingMergeTreeReplicatedCollapsingMergeTree

ReplicatedVersionedCollapsingMergeTree

ReplicatedGraphiteMergeTree

副本是表级别的,不是整个服务器级的。所以,服务器里可以同时有复制表和非复制表。

副本不依赖分片。每个分片有它自己的独立副本

建表语法

java 复制代码
CREATE TABLE table_name
(
    EventDate DateTime,
    CounterID UInt32,
    UserID UInt32
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{layer}-{shard}/table_name', '{replica}')
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
相关推荐
阿里云大数据AI技术44 分钟前
高效向量检索实践:阿里云百炼生成+Milvus存储技术方案解析
大数据·数据分析·云计算
Jing_saveSlave2 小时前
Kafka Stream从入门到精通:构建高吞吐、低延迟的实时流处理应用
大数据·分布式·kafka·linq
尘世壹俗人2 小时前
presto任务优化参数
大数据
lilye662 小时前
程序化广告行业(44/89):岗位职责与RTB竞价逻辑深度解析
大数据·elasticsearch·flask·memcache
镜舟科技3 小时前
镜舟科技荣膺“北京市用户满意企业”认证,以用户为中心驱动高质量发展
大数据·科技·lakehouse·创新·镜舟科技
b***25113 小时前
磷酸铁锂电池自动分选机:新能源产业的智能新宠
大数据·人工智能
宝哥大数据3 小时前
flink 基站与服务器长连接,每次连接和断开都会上报数据,统计过去一小时每个基站断开次数和时长
大数据·服务器·flink
Arbori_262155 小时前
Spark 程序的本地模式和集群模式
大数据·分布式·spark
金融小师妹11 小时前
DeepSeek分析:汽车关税政策对黄金市场的影响评估
大数据·人工智能·汽车
徐礼昭|商派软件市场负责人12 小时前
2025年消费观念转变与行为趋势全景洞察:”抽象、符号、游戏、共益、AI”重构新世代消费价值的新范式|徐礼昭
大数据·人工智能·游戏·重构·零售·中产阶级·消费洞察