光线不足成短板 特斯拉自动驾驶夜间失效撞飞小鹿

特斯拉的"全自动驾驶"系统在一次夜间行驶中未能识别路上的鹿,导致一辆Model 3直接撞上了静止的鹿。这起事故发生在一条标记清晰的高速公路上,当时周围几乎没有其他车辆。

车主Paul S表示,在使用全自动驾驶系统时,车辆并未尝试避开或停下来,甚至在撞击后也没有自行停下。

这一事件引发了对特斯拉自动驾驶系统在低照明条件下性能的质疑。

目前,尚不清楚系统未能避开鹿的具体原因,可能与夜间能见度降低或特斯拉图像识别能力不足有关。

据了解,特斯拉的全自动驾驶系统主要依赖摄像头,没有使用传感器、激光雷达设备或地图数据,这与一些竞争对手的技术不同。

如果系统配备有传感器,可能即使在摄像头无法识别的情况下也能检测到鹿。

在这起事故中,车辆的前保险杠和挡风玻璃受损较小,但如果撞击对象更大或为行人,后果可能更为严重。

这起事故凸显了特斯拉自动驾驶技术在识别和应对突发情况时的局限性,尤其是在夜间或能见度不佳的情况下。

尽管特斯拉的系统在某些情况下能够提供辅助,但此次事件提醒司机在使用自动驾驶功能时仍需保持警惕。

追评

早在 SIGGRAPH Asia 2019,Google就在提出过《Handheld Mobile Photography in Very Low Light》和 项目 https://github.com/google/night-sight。随后在小米手机和 OPPO 为首的一系列国产手机都通过优化cmos和高通芯片的网络算法,实现了令人惊奇的夜视效果。

图取自少数派@Bing澄博客

图取自少数派@Bing澄博客

但是这种方式,业内人士也提出过需要高速连拍,将瞬时大量的图片压缩,重排合成的。而且采用的是单目摄像,但不适合高速长时间摄像的场景。而特斯拉的HW3和HW4主要考虑对象在深度上的精确度,主采用双目和三目的摄像及视觉计算模型(一文带你对比特斯拉HW4.0与HW3.0 硬件),所以目前如特斯拉的新能源还是更适合在都市夜景(光源较为充沛)的环境下,正常使用自动驾驶。而像户外极端黑夜环境,还是建议停下来休息一晚,更为安全😃

相关推荐
weisian1511 分钟前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn
这里有鱼汤13 分钟前
90%的人都会搞错的XGBoost预测逻辑,未来到底怎么预测才对?
后端·机器学习
静心问道25 分钟前
SELF-INSTRUCT:使用自生成指令对齐语言模型
人工智能·语言模型·大模型
芷栀夏31 分钟前
基于Anything LLM的本地知识库系统远程访问实现路径
数据库·人工智能
AI生存日记31 分钟前
AI 日报:阿里、字节等企业密集发布新技术,覆盖语音、图像与药物研发等领域
人工智能·华为云·语音识别·open ai大模型
小庞在加油31 分钟前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类
hjs_deeplearning1 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
kngines1 小时前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
蓝婷儿2 小时前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
.30-06Springfield3 小时前
利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
人工智能·pytorch·python·rnn·分类·gru·lstm