【PyTorch】基础知识及常用操作

【PyTorch】基础知识及操作

基础知识

tensor的形状(shape)

在数据被加载为tensor时,PyTorch会根据原始的数据内容和形状 来生成tensor。由于tensor的操作依托于PyTorch提供的方法,此时tensor未必符合PyTorch提供方法的输入形状要求,或此tensor经过操作后不是预期结果。

因此,PyTorch在设计方法时大多对tensor进行了一致的形状建模,具体地讲:

  • 1D数据(通常为序列数据)的形状为:( C C C, L i n L_{in} Lin)/(通道数,数据长度)
  • 2D数据(通常为图像数据)的形状为:( C C C, H i n H_{in} Hin, W i n W_{in} Win)/(通道数,数据高度,数据宽度)

在处理tensor时为了提高计算效率,通常会一次性处理一批相同形状的数据。对于这批数据,其形状在单个数据的形状的基础上增加了批次信息,具体来说:

  • 1D数据在批处理时的形状为:( N N N, C C C, L i n L_{in} Lin)/(批处理大小,通道数,数据长度)
  • 2D数据在批处理时的形状为:( N N N, C C C, H i n H_{in} Hin, W i n W_{in} Win)/(批处理大小,通道数,数据高度,数据宽度)

值得注意的是,在使用PyTorch的方法对tensor进行处理时,方法要求的tensor输入形状与上述的通用形状未必一致 ,比如使用PyTorch提供的nn.LSTM模型方法时,1D数据的输入形状被要求为:( L i n L_{in} Lin, N N N, C C C)/(数据长度,批处理大小,通道数)。

因此,使用PyTorch的方法对tensor进行处理时,tensor的具体形状仍需参考方法的描述

常用操作

tensor处理

创建tensor

torch.Tensor() 和 torch.tensor() 是 PyTorch 中两个不同的方法,用于创建张量,但使用方式有一些区别。

torch.Tensor()

创建一个未初始化的张量,默认数据类型为 torch.float32,不能通过dtype 参数指定数据类型。

不初始化数据,即张量的内容是未定义的,可能是内存中的随机值。

用法: 常用于需要创建一个特定大小但未初始化的张量。

torch.tensor()

根据给定的数据创建一个新的张量,可以通过 dtype 参数指定数据类型。

用法: 用于从数据(例如列表或数组)创建张量。[1](#1)

拼接tensor

torch.cat 和 torch.stack 是 PyTorch 中用于拼接张量的两个不同的函数,它们的主要区别在于拼接的方式和创建的维度。[2](#2)

获取tensor中元素数目

pytorch中,numel() 函数用于获取张量中元素数目,其中 numel() 可以理解为是 number of elements 的缩写。[3](#3)

神经网络层使用

卷积层

卷积操作可参照[4](#4)

设备信息获取

复制代码
def gpus(self, model):
    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = nn.DataParallel(model)
    return model

  1. torch.Tensor() 和 torch.tensor()的区别 ↩︎

  2. Pytorch种torch.cat与torch.stack的区别 ↩︎

  3. pytorch中numel()函数用于获取张量中元素数目 ↩︎

  4. pytorch中Conv1d、Conv2d与Conv3d详解 ↩︎

相关推荐
雪兽软件3 分钟前
人工智能(AI)的商业模式创新路线图
人工智能
L-李俊漩25 分钟前
MMN-MnnLlmChat 启动顺序解析
开发语言·python·mnn
俊哥V28 分钟前
AI一周事件(2025年11月12日-11月18日)
人工智能·ai
算法与编程之美29 分钟前
提升minist的准确率并探索分类指标Precision,Recall,F1-Score和Accuracy
人工智能·算法·机器学习·分类·数据挖掘
拓端研究室31 分钟前
专题:2025年全球机器人产业发展白皮书-具身智能时代的技术突破|附39份报告PDF、数据、可视化模板汇总下载
人工智能
金智维科技官方42 分钟前
政务自动化中,智能体如何实现流程智能审批?
人工智能·自动化·政务·智能体
xiaoginshuo1 小时前
智能体与RPA流程自动化:从工作流搭建看本质区别
人工智能·自动化·rpa
大雷神1 小时前
HarmonyOS 横竖屏切换与响应式布局实战指南
python·深度学习·harmonyos
钅日 勿 XiName1 小时前
一小时速通pytorch之训练分类器(四)(完结)
人工智能·pytorch·python
青瓷程序设计1 小时前
水果识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习