【PyTorch】基础知识及常用操作

【PyTorch】基础知识及操作

基础知识

tensor的形状(shape)

在数据被加载为tensor时,PyTorch会根据原始的数据内容和形状 来生成tensor。由于tensor的操作依托于PyTorch提供的方法,此时tensor未必符合PyTorch提供方法的输入形状要求,或此tensor经过操作后不是预期结果。

因此,PyTorch在设计方法时大多对tensor进行了一致的形状建模,具体地讲:

  • 1D数据(通常为序列数据)的形状为:( C C C, L i n L_{in} Lin)/(通道数,数据长度)
  • 2D数据(通常为图像数据)的形状为:( C C C, H i n H_{in} Hin, W i n W_{in} Win)/(通道数,数据高度,数据宽度)

在处理tensor时为了提高计算效率,通常会一次性处理一批相同形状的数据。对于这批数据,其形状在单个数据的形状的基础上增加了批次信息,具体来说:

  • 1D数据在批处理时的形状为:( N N N, C C C, L i n L_{in} Lin)/(批处理大小,通道数,数据长度)
  • 2D数据在批处理时的形状为:( N N N, C C C, H i n H_{in} Hin, W i n W_{in} Win)/(批处理大小,通道数,数据高度,数据宽度)

值得注意的是,在使用PyTorch的方法对tensor进行处理时,方法要求的tensor输入形状与上述的通用形状未必一致 ,比如使用PyTorch提供的nn.LSTM模型方法时,1D数据的输入形状被要求为:( L i n L_{in} Lin, N N N, C C C)/(数据长度,批处理大小,通道数)。

因此,使用PyTorch的方法对tensor进行处理时,tensor的具体形状仍需参考方法的描述

常用操作

tensor处理

创建tensor

torch.Tensor() 和 torch.tensor() 是 PyTorch 中两个不同的方法,用于创建张量,但使用方式有一些区别。

torch.Tensor()

创建一个未初始化的张量,默认数据类型为 torch.float32,不能通过dtype 参数指定数据类型。

不初始化数据,即张量的内容是未定义的,可能是内存中的随机值。

用法: 常用于需要创建一个特定大小但未初始化的张量。

torch.tensor()

根据给定的数据创建一个新的张量,可以通过 dtype 参数指定数据类型。

用法: 用于从数据(例如列表或数组)创建张量。^1^

拼接tensor

torch.cat 和 torch.stack 是 PyTorch 中用于拼接张量的两个不同的函数,它们的主要区别在于拼接的方式和创建的维度。^2^

获取tensor中元素数目

pytorch中,numel() 函数用于获取张量中元素数目,其中 numel() 可以理解为是 number of elements 的缩写。^3^

神经网络层使用

卷积层

卷积操作可参照^4^

设备信息获取

def gpus(self, model):
    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = nn.DataParallel(model)
    return model

  1. torch.Tensor() 和 torch.tensor()的区别 ↩︎

  2. Pytorch种torch.cat与torch.stack的区别 ↩︎

  3. pytorch中numel()函数用于获取张量中元素数目 ↩︎

  4. pytorch中Conv1d、Conv2d与Conv3d详解 ↩︎

相关推荐
东临碣石821 分钟前
【重磅AI论文】DeepSeek-R1:通过强化学习激励大语言模型(LLMs)的推理能力
人工智能·深度学习·语言模型
SmallBambooCode4 分钟前
【Flask】在Flask应用中使用Flask-Limiter进行简单CC攻击防御
后端·python·flask
抱抱宝15 分钟前
Pyecharts之图表样式深度定制
python·信息可视化·数据分析
码界筑梦坊24 分钟前
基于Flask的哔哩哔哩评论数据可视化分析系统的设计与实现
python·信息可视化·flask·毕业设计
大懒猫软件32 分钟前
如何有效使用Python爬虫将网页数据存储到Word文档
爬虫·python·自动化·word
大数据魔法师35 分钟前
1905电影网中国地区电影数据分析(二) - 数据分析与可视化
python·数据分析
&白帝&36 分钟前
JAVA JDK7时间相关类
java·开发语言·python
涛涛讲AI1 小时前
扣子平台音频功能:让声音也能“智能”起来
人工智能·音视频·工作流·智能体·ai智能体·ai应用
霍格沃兹测试开发学社测试人社区1 小时前
人工智能在音频、视觉、多模态领域的应用
软件测试·人工智能·测试开发·自动化·音视频
herosunly2 小时前
2024:人工智能大模型的璀璨年代
人工智能·大模型·年度总结·博客之星