【文本情感分析识别】Python+SVM算法+模型训练+文本分类+文本情感分析

一、介绍

使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。

二、效果图片展示

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/yn2icplnbkwafd10

四、SVM算法介绍

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类问题,但也可用于回归分析。SVM的核心思想是在特征空间中找到一个最优的超平面,这个超平面能够最大化地分隔不同类别的数据点。

  1. 最大间隔:SVM试图找到具有最大间隔的超平面,即在不同类别的数据点之间创建尽可能大的间隙。

  2. 支持向量:决定超平面位置的数据点被称为支持向量,它们是距离超平面最近的点。

  3. 核技巧:SVM通过核函数将数据映射到高维空间,以解决非线性问题,常见的核函数包括线性核、多项式核、径向基函数核等。

  4. 软间隔和正则化:为了处理非线性可分的情况,SVM引入了软间隔和正则化参数C,允许一些数据点违反最大间隔规则,以提高模型的泛化能力。

下面是一个使用Python的scikit-learn库实现SVM分类的简单示例代码:

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建SVM分类器
svm_classifier = SVC(kernel='linear', C=1.0, random_state=42)

# 训练模型
svm_classifier.fit(X_train, y_train)

# 预测测试集
y_pred = svm_classifier.predict(X_test)

# 评估模型
print(classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))

这段代码首先加载了鸢尾花数据集,然后划分训练集和测试集,并进行了特征缩放。接着创建了一个线性核的SVM分类器,并在训练集上训练模型。最后,使用测试集进行预测,并输出分类报告和准确率。

相关推荐
咚咚王者3 分钟前
人工智能之数学基础 概率论与统计:第二章 核心定理
人工智能·概率论
flashlight_hi3 分钟前
LeetCode 分类刷题:110. 平衡二叉树
javascript·算法·leetcode
式5164 分钟前
线性代数(九)线性相关性、基与维数
线性代数·算法·机器学习
小徐Chao努力4 分钟前
Spring AI Alibaba A2A 使用指南
java·人工智能·spring boot·spring·spring cloud·agent·a2a
啊阿狸不会拉杆5 分钟前
《数字图像处理》第7章:小波变换和其他图像变换
图像处理·人工智能·python·算法·机器学习·计算机视觉·数字图像处理
yiersansiwu123d5 分钟前
生成式AI重构内容生态,人机协同定义创作新范式
大数据·人工智能·重构
炽烈小老头5 分钟前
【 每天学习一点算法 2025/12/17】验证二叉搜索树
学习·算法
老蒋新思维7 分钟前
创客匠人:从个人IP到知识变现,如何构建可持续的内容生态?
大数据·网络·人工智能·网络协议·tcp/ip·创客匠人·知识变现
用户2719953721312 分钟前
基于Label Studio 集成视觉大模型Qwen2-VL和yolo实现自动标注
算法
HyperAI超神经13 分钟前
GPT-5全面领先,OpenAI发布FrontierScience,「推理+科研」双轨检验大模型能力
人工智能·gpt·ai·openai·benchmark·基准测试·gpt5.2