【文本情感分析识别】Python+SVM算法+模型训练+文本分类+文本情感分析

一、介绍

使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。

二、效果图片展示

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/yn2icplnbkwafd10

四、SVM算法介绍

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类问题,但也可用于回归分析。SVM的核心思想是在特征空间中找到一个最优的超平面,这个超平面能够最大化地分隔不同类别的数据点。

  1. 最大间隔:SVM试图找到具有最大间隔的超平面,即在不同类别的数据点之间创建尽可能大的间隙。

  2. 支持向量:决定超平面位置的数据点被称为支持向量,它们是距离超平面最近的点。

  3. 核技巧:SVM通过核函数将数据映射到高维空间,以解决非线性问题,常见的核函数包括线性核、多项式核、径向基函数核等。

  4. 软间隔和正则化:为了处理非线性可分的情况,SVM引入了软间隔和正则化参数C,允许一些数据点违反最大间隔规则,以提高模型的泛化能力。

下面是一个使用Python的scikit-learn库实现SVM分类的简单示例代码:

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建SVM分类器
svm_classifier = SVC(kernel='linear', C=1.0, random_state=42)

# 训练模型
svm_classifier.fit(X_train, y_train)

# 预测测试集
y_pred = svm_classifier.predict(X_test)

# 评估模型
print(classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))

这段代码首先加载了鸢尾花数据集,然后划分训练集和测试集,并进行了特征缩放。接着创建了一个线性核的SVM分类器,并在训练集上训练模型。最后,使用测试集进行预测,并输出分类报告和准确率。

相关推荐
飞哥数智坊4 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三4 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯5 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet7 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算7 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心7 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar8 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai9 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI9 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear11 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp