【文本情感分析识别】Python+SVM算法+模型训练+文本分类+文本情感分析

一、介绍

使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。

二、效果图片展示

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/yn2icplnbkwafd10

四、SVM算法介绍

支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类问题,但也可用于回归分析。SVM的核心思想是在特征空间中找到一个最优的超平面,这个超平面能够最大化地分隔不同类别的数据点。

  1. 最大间隔:SVM试图找到具有最大间隔的超平面,即在不同类别的数据点之间创建尽可能大的间隙。

  2. 支持向量:决定超平面位置的数据点被称为支持向量,它们是距离超平面最近的点。

  3. 核技巧:SVM通过核函数将数据映射到高维空间,以解决非线性问题,常见的核函数包括线性核、多项式核、径向基函数核等。

  4. 软间隔和正则化:为了处理非线性可分的情况,SVM引入了软间隔和正则化参数C,允许一些数据点违反最大间隔规则,以提高模型的泛化能力。

下面是一个使用Python的scikit-learn库实现SVM分类的简单示例代码:

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建SVM分类器
svm_classifier = SVC(kernel='linear', C=1.0, random_state=42)

# 训练模型
svm_classifier.fit(X_train, y_train)

# 预测测试集
y_pred = svm_classifier.predict(X_test)

# 评估模型
print(classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))

这段代码首先加载了鸢尾花数据集,然后划分训练集和测试集,并进行了特征缩放。接着创建了一个线性核的SVM分类器,并在训练集上训练模型。最后,使用测试集进行预测,并输出分类报告和准确率。

相关推荐
梦想画家1 分钟前
企业AI审计实战:系统级对接的高效自动化落地方案
人工智能·自动化
说私域1 分钟前
数字化运营视角下用户留存体系构建与实践研究——以AI智能客服商城小程序为载体
人工智能·小程序·产品运营·流量运营·私域运营
贡献者手册2 分钟前
当 AI 写代码的速度超过了你提交的速度:为何你需要一款“流式” Git 管理器?
人工智能·git
Rorsion5 分钟前
PyTorch实现卷积神经网络(CNN)
人工智能·神经网络·cnn
向哆哆7 分钟前
高压电线电力巡检六类目标的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
清钟沁桐11 分钟前
算法实现
算法
梦游钓鱼12 分钟前
c++中一维数组和二维数组的应用
数据结构·c++·算法
铁甲前沿13 分钟前
基于最小二乘拟合减小四轮定位数据采集误差的方法
算法
程序员酥皮蛋26 分钟前
hot 100 第二十六题 26.环形链表 II
算法
张居邪26 分钟前
# RAG + LangGraph 实战:4 个工程踩坑,让 AI 从"能用"到"能上线"
人工智能·开源