时序数据分析:短时序分类问题

在短序列时序分类中,一个特殊情况就是每个批次的时序长度可能不同(例如化工过程不同生产周期长度略微不同)​。通常预处理策略包括(如图1所示)​:

1)在原始数据强行截取,通常采用掐头去尾的启发式策略。

2)通过特征提取,将其转化为等长的特征向量。

3)在聚类中,采用允许不同长度的时序相似度评价方法(例如DTW)进行聚类,后面利用聚类信息进行分析。
图1 单个时序变量聚类后形成分类特征量

短时序分析的另外一个问题就是降维,有变量间、记录间降维两种方式。

1)变量间可以做PCA(主成分分析)​(如图2所示)

图2 变量间的PCA形成分类特征向量

2)记录间可以做聚类(提取典型变化)​(如图3所示)
图3 记录间聚类形成分类特征量

短时序(例如示功图、一次机加工过程)分类问题,通常的思路是采用时序再表征、时序聚类或特征提取的方式,将原始的时序转化为特征向量,然后采用通用的分类算法进行建模,整体路线如图4所示。针对短时序,形状也可以被用来作为决策树算法的判据。例如,Shapelet能够表征某个类别的相位无关(Phase-Independent)的子序列,也就是说Shapelet出现在序列的什么位置不重要(重要的是有没有出现)​。在具体实现中,通常采用Shapelet Transformation生成特征向量,并将其作为经典的分类算法的输入。根据信息增益对给定的备选Shapelet进行排序。对于给定的k个Shapelet,将它们与每个样本的距离作为特征向量。
图4 时序特征提取过程

这样就可以用经典分析算法对特征向量进行后续处理,如图5所示。
图5 短序列聚类的过程示意图

相关推荐
Quintus五等升2 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146042 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
天天讯通3 小时前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
飞Link3 小时前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
夜勤月3 小时前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全
万物得其道者成3 小时前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux
码农三叔3 小时前
(3-2)机器人身体结构与人体仿生学:人形机器人躯干系统
人工智能·架构·机器人·人形机器人
bleuesprit4 小时前
LLM语言模型Lora微调
人工智能·语言模型·lora
sunxunyong4 小时前
CC2Github配置
人工智能
B站计算机毕业设计超人4 小时前
计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hadoop·python·机器学习·知识图谱·课程设计