时序数据分析:短时序分类问题

在短序列时序分类中,一个特殊情况就是每个批次的时序长度可能不同(例如化工过程不同生产周期长度略微不同)​。通常预处理策略包括(如图1所示)​:

1)在原始数据强行截取,通常采用掐头去尾的启发式策略。

2)通过特征提取,将其转化为等长的特征向量。

3)在聚类中,采用允许不同长度的时序相似度评价方法(例如DTW)进行聚类,后面利用聚类信息进行分析。
图1 单个时序变量聚类后形成分类特征量

短时序分析的另外一个问题就是降维,有变量间、记录间降维两种方式。

1)变量间可以做PCA(主成分分析)​(如图2所示)

图2 变量间的PCA形成分类特征向量

2)记录间可以做聚类(提取典型变化)​(如图3所示)
图3 记录间聚类形成分类特征量

短时序(例如示功图、一次机加工过程)分类问题,通常的思路是采用时序再表征、时序聚类或特征提取的方式,将原始的时序转化为特征向量,然后采用通用的分类算法进行建模,整体路线如图4所示。针对短时序,形状也可以被用来作为决策树算法的判据。例如,Shapelet能够表征某个类别的相位无关(Phase-Independent)的子序列,也就是说Shapelet出现在序列的什么位置不重要(重要的是有没有出现)​。在具体实现中,通常采用Shapelet Transformation生成特征向量,并将其作为经典的分类算法的输入。根据信息增益对给定的备选Shapelet进行排序。对于给定的k个Shapelet,将它们与每个样本的距离作为特征向量。
图4 时序特征提取过程

这样就可以用经典分析算法对特征向量进行后续处理,如图5所示。
图5 短序列聚类的过程示意图

相关推荐
深度学习实战训练营29 分钟前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20062 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_2 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover2 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川3 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃5 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力7 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20217 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
布说在见8 小时前
层次与网络的视觉对话:树图与力引导布局的双剑合璧
信息可视化·数据挖掘·数据分析
其实吧38 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab