时序数据分析:短时序分类问题

在短序列时序分类中,一个特殊情况就是每个批次的时序长度可能不同(例如化工过程不同生产周期长度略微不同)​。通常预处理策略包括(如图1所示)​:

1)在原始数据强行截取,通常采用掐头去尾的启发式策略。

2)通过特征提取,将其转化为等长的特征向量。

3)在聚类中,采用允许不同长度的时序相似度评价方法(例如DTW)进行聚类,后面利用聚类信息进行分析。
图1 单个时序变量聚类后形成分类特征量

短时序分析的另外一个问题就是降维,有变量间、记录间降维两种方式。

1)变量间可以做PCA(主成分分析)​(如图2所示)

图2 变量间的PCA形成分类特征向量

2)记录间可以做聚类(提取典型变化)​(如图3所示)
图3 记录间聚类形成分类特征量

短时序(例如示功图、一次机加工过程)分类问题,通常的思路是采用时序再表征、时序聚类或特征提取的方式,将原始的时序转化为特征向量,然后采用通用的分类算法进行建模,整体路线如图4所示。针对短时序,形状也可以被用来作为决策树算法的判据。例如,Shapelet能够表征某个类别的相位无关(Phase-Independent)的子序列,也就是说Shapelet出现在序列的什么位置不重要(重要的是有没有出现)​。在具体实现中,通常采用Shapelet Transformation生成特征向量,并将其作为经典的分类算法的输入。根据信息增益对给定的备选Shapelet进行排序。对于给定的k个Shapelet,将它们与每个样本的距离作为特征向量。
图4 时序特征提取过程

这样就可以用经典分析算法对特征向量进行后续处理,如图5所示。
图5 短序列聚类的过程示意图

相关推荐
home_4984 小时前
与gemini关于宇宙观科幻对话
人工智能
Candice Can4 小时前
【机器学习】吴恩达机器学习Lecture2-Linear regression with one variable
人工智能·机器学习·线性回归·吴恩达机器学习
undsky_4 小时前
【RuoYi-SpringBoot3-Pro】:将 AI 编程融入传统 java 开发
java·人工智能·spring boot·ai·ai编程
薛定谔的猫19824 小时前
十二、基于 BERT 的中文文本二分类模型测试实战:从数据加载到准确率评估
人工智能·分类·bert
淮北4944 小时前
Reinforce算法
人工智能·机器学习
shangjian0074 小时前
AI-大语言模型LLM-概念术语-Dropout
人工智能·语言模型·自然语言处理
小鸡吃米…4 小时前
机器学习 - 高斯判别分析(Gaussian Discriminant Analysis)
人工智能·深度学习·机器学习
香芋Yu4 小时前
【机器学习教程】第01章:机器学习概览
人工智能·机器学习
HySpark4 小时前
关于语音智能技术实践与应用探索
人工智能·语音识别
AI应用开发实战派4 小时前
AI人工智能中Bard的智能电子商务优化
人工智能·ai·bard