【论文笔记】Token Turing Machines

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Token Turing Machines
作者 : Michael S. Ryoo, Keerthana Gopalakrishnan, Kumara Kahatapitiya, Ted Xiao, Kanishka Rao, Austin Stone, Yao Lu, Julian Ibarz, Anurag Arnab
发表 : CVPR 2023
arXiv : https://arxiv.org/abs/2211.09119

摘要

我们提出了一种Token图灵机(TTM),这是一种具有记忆功能的顺序自回归Transformer模型,用于现实世界的顺序视觉理解。

我们的模型受到开创性的神经图灵机的启发,并具有一个外部记忆,由一组总结先前历史(即帧)的标记组成。

这个记忆通过在每个步骤使用Transformer作为处理单元/控制器来高效地寻址、读取和写入。

模型的记忆模块确保新的观察结果只与记忆内容(而不是整个历史)进行处理,这意味着它可以高效地处理长序列,并在每个步骤保持有限的计算成本。

我们表明,在两个现实世界的顺序视觉理解任务上,TTM优于其他替代方案,例如为长序列设计的其他Transformer模型和循环神经网络,这些任务包括从视频中在线检测时间活动以及基于视觉的机器人动作策略学习。

代码开源于:https://github.com/google-research/scenic/tree/main/scenic/projects/token_turing

方法

模型架构

模型由存储器(Memory)、读写模块和处理单元构成。

Reader

接受Memory和Inputs输入,压缩为处理单元输入所需的大小。

Writer

接受处理单元输出、Memory和Inputs输入,压缩为Memory所需的大小。

实验

主实验

TTM在Charades temporal activity detection任务上与先前SOTA方法的对比。

TTM与其他不同序列模型的对比。

消融实验

总结

我们引入了Token图灵机用于序列决策。

Token图灵机可以看作是神经图灵机的现代化,其内存读写是通过标记摘要来设计的。

它具有现代基于Transformer模型的优点,同时得益于拥有外部内存:无论历史长度如何,计算都是恒定的。

这种能力在许多序列决策和在线推理问题中尤为重要,例如机器人动作策略学习。

我们通过具有挑战性视觉输入的真实世界任务验证了其能力:即即兴表演活动定位和基于视觉的机器人动作策略学习。

相关推荐
不灭蚊香8 分钟前
YOLOv2 (You Only Look Once Version 2)
深度学习·神经网络·yolo·目标检测·计算机视觉·cnn
机器之心14 分钟前
质量超越o1,成本仅4%,UCSD张怡颖教授团队开源生成式AI工作流自动优化器
人工智能·后端
星辰@Sea23 分钟前
使用OpenCV和卡尔曼滤波器进行实时活体检测
人工智能·opencv·计算机视觉
Tronlongtech26 分钟前
基于OpenCV的拆分和合并图像通道实验案例分享_基于RK3568教学实验箱
人工智能·opencv·计算机视觉
算力魔方AIPC32 分钟前
PyTorch 2.5.1: Bugs修复版发布
人工智能·pytorch·python
Joyner201835 分钟前
pytorch中有哪些归一化的方式?
人工智能·pytorch·python
Niuguangshuo37 分钟前
PyTorch 实现动态输入
人工智能·pytorch·python
禾风wyh38 分钟前
【PyTorch】回归问题代码实战
python·算法·机器学习
总有一天你的谜底会解开38 分钟前
pytorch加载预训练权重失败
人工智能·pytorch·python
每天八杯水D40 分钟前
python使用pdfplumber工具包加载pdf格式数据
人工智能·python·机器学习·pdfplumber·加载pdf数据