【论文笔记】Token Turing Machines

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Token Turing Machines
作者 : Michael S. Ryoo, Keerthana Gopalakrishnan, Kumara Kahatapitiya, Ted Xiao, Kanishka Rao, Austin Stone, Yao Lu, Julian Ibarz, Anurag Arnab
发表 : CVPR 2023
arXiv : https://arxiv.org/abs/2211.09119

摘要

我们提出了一种Token图灵机(TTM),这是一种具有记忆功能的顺序自回归Transformer模型,用于现实世界的顺序视觉理解。

我们的模型受到开创性的神经图灵机的启发,并具有一个外部记忆,由一组总结先前历史(即帧)的标记组成。

这个记忆通过在每个步骤使用Transformer作为处理单元/控制器来高效地寻址、读取和写入。

模型的记忆模块确保新的观察结果只与记忆内容(而不是整个历史)进行处理,这意味着它可以高效地处理长序列,并在每个步骤保持有限的计算成本。

我们表明,在两个现实世界的顺序视觉理解任务上,TTM优于其他替代方案,例如为长序列设计的其他Transformer模型和循环神经网络,这些任务包括从视频中在线检测时间活动以及基于视觉的机器人动作策略学习。

代码开源于:https://github.com/google-research/scenic/tree/main/scenic/projects/token_turing

方法

模型架构

模型由存储器(Memory)、读写模块和处理单元构成。

Reader

接受Memory和Inputs输入,压缩为处理单元输入所需的大小。

Writer

接受处理单元输出、Memory和Inputs输入,压缩为Memory所需的大小。

实验

主实验

TTM在Charades temporal activity detection任务上与先前SOTA方法的对比。

TTM与其他不同序列模型的对比。

消融实验

总结

我们引入了Token图灵机用于序列决策。

Token图灵机可以看作是神经图灵机的现代化,其内存读写是通过标记摘要来设计的。

它具有现代基于Transformer模型的优点,同时得益于拥有外部内存:无论历史长度如何,计算都是恒定的。

这种能力在许多序列决策和在线推理问题中尤为重要,例如机器人动作策略学习。

我们通过具有挑战性视觉输入的真实世界任务验证了其能力:即即兴表演活动定位和基于视觉的机器人动作策略学习。

相关推荐
学习编程之路7 分钟前
ModelEngine vs Dify / Coze / Versatile 全面对比评测
人工智能·智能体
哥布林学者15 分钟前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(一)正交化调优和评估指标
深度学习·ai
wuk99839 分钟前
MATLAB双树复小波变换(DTCWT)工具包详解
人工智能·计算机视觉·matlab
Petrichor_H_42 分钟前
DAY 39 图像数据与显存
人工智能·深度学习
vvoennvv1 小时前
【Python TensorFlow】 TCN-LSTM时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·机器学习·tensorflow·lstm·tcn
yumgpkpm1 小时前
数据可视化AI、BI工具,开源适配 Cloudera CMP 7.3(或类 CDP 的 CMP 7.13 平台,如华为鲲鹏 ARM 版)值得推荐?
人工智能·hive·hadoop·信息可视化·kafka·开源·hbase
亚马逊云开发者1 小时前
通过Amazon Q CLI 集成DynamoDB MCP 实现游戏场景智能数据建模
人工智能
nix.gnehc1 小时前
PyTorch
人工智能·pytorch·python
J_Xiong01172 小时前
【VLNs篇】17:NaVid:基于视频的VLM规划视觉语言导航的下一步
人工智能·机器人
小殊小殊2 小时前
【论文笔记】视频RAG-Vgent:基于图结构的视频检索推理框架
论文阅读·人工智能·深度学习