Genmoai-smol:专为单 GPU 优化的开源 AI 视频生成模型,低显存生成高质量视频

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. Genmoai-smol 是一个优化过的视频生成模型,能在单个 GPU 上运行,并减少显存占用。
  2. 该模型支持通过 Gradio UI 或命令行界面生成视频,具有高保真度的运动和强大的提示遵循能力。
  3. 项目开源,提供了详细的安装和运行教程,适合在显存有限的设备上进行视频创作。

正文(附运行示例)

Genmoai-smol 是什么

Genmoai-smol 是 Genmoai 的 txt2video 模型 的一个优化分支,专为在单个 GPU 节点上运行而设计,减少了显存占用。它能够在只有 24GB 显存的 GPU 上生成高质量的视频内容,适合资源受限的环境使用。模型通过高保真度的运动和强大的提示遵循能力,缩小了开放和封闭视频生成系统之间的差距。

Genmoai-smol 的主要功能

  • 视频生成:将文本描述转换为视频内容。
  • 高保真度运动:生成自然流畅的视频内容。
  • 强大的提示遵循能力:理解并遵循用户的文本提示。
  • 优化显存占用:通过技术手段减少显存使用,适合单 GPU 设备。
  • 用户界面:提供 Gradio UI 和命令行界面两种操作方式。

Genmoai-smol 的技术原理

  • 深度学习模型:基于生成对抗网络(GANs)或变分自编码器(VAEs)等深度学习技术生成视频内容。
  • 文本到视频的转换:通过自然语言处理(NLP)技术理解文本提示,生成对应的视频内容。
  • 显存优化:通过将部分模型移回 CPU 和使用 bfloat16 数据类型等手段优化显存使用。
  • 多步骤推理:推理步骤不改变显存使用,但生成视频的时间随步骤增加而增加。
  • 系统资源管理:需要大量系统 RAM(约 64GB)来保证流畅的视频生成过程。

如何运行 Genmoai-smol

安装步骤

  1. 克隆项目仓库:
bash 复制代码
git clone https://github.com/victorchall/genmoai-smol
cd models
  1. 安装 uv 工具并创建虚拟环境:
bash 复制代码
pip install uv
uv venv .venv
source .venv/bin/activate
uv pip install -e .
  1. 下载模型权重(可以从 Hugging Face 下载或使用磁力链接)。

运行 Gradio UI

启动 Gradio UI:

bash 复制代码
python3 -m mochi_preview.gradio_ui --model_dir "<path_to_downloaded_directory>"

命令行生成视频

使用命令行直接生成视频:

bash 复制代码
python3 -m mochi_preview.infer --prompt "A hand with delicate fingers picks up a bright yellow lemon from a wooden bowl filled with lemons and sprigs of mint against a peach-colored background. The hand gently tosses the lemon up and catches it, showcasing its smooth texture. A beige string bag sits beside the bowl, adding a rustic touch to the scene. Additional lemons, one halved, are scattered around the base of the bowl. The even lighting enhances the vibrant colors and creates a fresh, inviting atmosphere." --seed 1710977262 --cfg-scale 4.5 --model_dir "<path_to_downloaded_directory>"

<path_to_downloaded_directory> 替换为您下载模型权重的目录路径。

资源

  • 关注并回复公众号【63】或【GenmoaiSmol】获取相关项目资源。

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关推荐
池央26 分钟前
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
人工智能·阿里云·云计算
我们的五年27 分钟前
DeepSeek 和 ChatGPT 在特定任务中的表现:逻辑推理与创意生成
人工智能·chatgpt·ai作画·deepseek
Yan-英杰28 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
Fuweizn30 分钟前
富唯智能可重构柔性装配产线:以智能协同赋能制造业升级
人工智能·智能机器人·复合机器人
taoqick2 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
suibian52352 小时前
AI时代:前端开发的职业发展路径拓宽
前端·人工智能
预测模型的开发与应用研究4 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
源大模型4 小时前
OS-Genesis:基于逆向任务合成的 GUI 代理轨迹自动化生成
人工智能·gpt·智能体
PowerBI学谦5 小时前
Python in Excel高级分析:一键RFM分析
大数据·人工智能·pandas
运维开发王义杰5 小时前
AI: Unsloth + Llama 3 微调实践,基于Colab
人工智能·llama