Python聚类算法K-means

1.库安装:scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

2.学习网站:2.3. 聚类 - sklearn

  1. KMeans 算法

KMeans 算法通过把样本分离成 n 个具有相同方差的类的方式来聚集数据,最小化称为 惯量(inertia) 或 簇内平方和(within-cluster sum-of-squares)的标准(criterion)。该算法需要指定簇的数量。它可以很好地扩展到大量样本(large number of samples),并已经被广泛应用于许多不同领域的应用领域。

k-means 算法将一组 样本 划分成 不相交的簇 , 每个都用该簇中的样本的均值 描述。 这个均值(means)通常被称为簇的 "质心(centroids)"; 注意,它们一般不是从 中挑选出的点,虽然它们是处在同一个空间。

K-means(K-均值)算法旨在选择一个质心, 能够最小化惯性或簇内平方和的标准:

4.算法流程

(1)选择K个点作为初始质心。

(2)将每个点指派到最近的质心,形成K个簇。

(3)对于上一步聚类的结果,进行平均计算,得出该簇的新的聚类中心。

(4)重复上述两步/直到迭代结束:质心不发生变化。

使用for循环计算聚类个数为2至9时的轮廓系数值,寻找最优聚类个数代码:

import pandas as pd

import numpy as np

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_samples

from sklearn.metrics import silhouette_score

import matplotlib.pyplot as plt

读取Excel文件

df = pd.read_excel('E:\python练习\Python_Kmeans\工作簿1.xlsx', sheet_name='Sheet1')

data1=df['Relative Humidity']

data1=np.array(data1)

data2=df['Temp']

data2=np.array(data2)

data3=df['Wind']

data3=np.array(data3)

DATA=np.vstack((data1,data2,data3)).T

K=range(2,9)

score=[]

for k in K:

kmeans=KMeans(n_clusters=k)

kmeans.fit(DATA)

score.append(silhouette_score(DATA,kmeans.labels_,metric='euclidean'))

plt.plot(K,score,'r*-')

plt.xlabel('k')

plt.ylabel(u'lkxs')

plt.title(u'K_vaule')

plt.show()

相关推荐
咖啡の猫24 分钟前
Python的自述
开发语言·python
九年义务漏网鲨鱼32 分钟前
【大模型面经】千问系列专题面经
人工智能·深度学习·算法·大模型·强化学习
源码之家1 小时前
机器学习:基于大数据二手房房价预测与分析系统 可视化 线性回归预测算法 Django框架 链家网站 二手房 计算机毕业设计✅
大数据·算法·机器学习·数据分析·spark·线性回归·推荐算法
重启编程之路1 小时前
python 基础学习socket -TCP编程
网络·python·学习·tcp/ip
Lv Jianwei1 小时前
Longest Palindromic Substring最长回文子串-学习动态规划Dynamic Programming(DP)
算法
WWZZ20252 小时前
快速上手大模型:深度学习7(实践:卷积层)
人工智能·深度学习·算法·机器人·大模型·卷积神经网络·具身智能
l1t2 小时前
用SQL求解advent of code 2024年23题
数据库·sql·算法
云和数据.ChenGuang2 小时前
pycharm怎么将背景换成白色
ide·python·pycharm
10岁的博客2 小时前
二维差分算法高效解靶场问题
java·服务器·算法
轻微的风格艾丝凡2 小时前
锂电池 SOC 估计技术综述:成熟算法、新颖突破与车企应用实践
算法·汽车