Python聚类算法K-means

1.库安装:scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

2.学习网站:2.3. 聚类 - sklearn

  1. KMeans 算法

KMeans 算法通过把样本分离成 n 个具有相同方差的类的方式来聚集数据,最小化称为 惯量(inertia) 或 簇内平方和(within-cluster sum-of-squares)的标准(criterion)。该算法需要指定簇的数量。它可以很好地扩展到大量样本(large number of samples),并已经被广泛应用于许多不同领域的应用领域。

k-means 算法将一组 样本 划分成 不相交的簇 , 每个都用该簇中的样本的均值 描述。 这个均值(means)通常被称为簇的 "质心(centroids)"; 注意,它们一般不是从 中挑选出的点,虽然它们是处在同一个空间。

K-means(K-均值)算法旨在选择一个质心, 能够最小化惯性或簇内平方和的标准:

4.算法流程

(1)选择K个点作为初始质心。

(2)将每个点指派到最近的质心,形成K个簇。

(3)对于上一步聚类的结果,进行平均计算,得出该簇的新的聚类中心。

(4)重复上述两步/直到迭代结束:质心不发生变化。

使用for循环计算聚类个数为2至9时的轮廓系数值,寻找最优聚类个数代码:

import pandas as pd

import numpy as np

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_samples

from sklearn.metrics import silhouette_score

import matplotlib.pyplot as plt

读取Excel文件

df = pd.read_excel('E:\python练习\Python_Kmeans\工作簿1.xlsx', sheet_name='Sheet1')

data1=df['Relative Humidity']

data1=np.array(data1)

data2=df['Temp']

data2=np.array(data2)

data3=df['Wind']

data3=np.array(data3)

DATA=np.vstack((data1,data2,data3)).T

K=range(2,9)

score=[]

for k in K:

kmeans=KMeans(n_clusters=k)

kmeans.fit(DATA)

score.append(silhouette_score(DATA,kmeans.labels_,metric='euclidean'))

plt.plot(K,score,'r*-')

plt.xlabel('k')

plt.ylabel(u'lkxs')

plt.title(u'K_vaule')

plt.show()

相关推荐
岑梓铭4 分钟前
《考研408数据结构》第七章(6.1~6.3图的概念、存储方式、深/广度遍历)复习笔记
数据结构·笔记·考研·算法·图论·408·ds
用户6174332731014 分钟前
Python 的 with ... as ... 上下文管理器
python
qq_4335545429 分钟前
C++ 单调栈
数据结构·c++·算法
向前阿、31 分钟前
数据结构从基础到实战——排序
c语言·开发语言·数据结构·程序人生·算法
周周记笔记1 小时前
PyCharm的初始设置
ide·python·pycharm
2401_841495641 小时前
【语音识别】混合高斯模型
人工智能·python·算法·机器学习·语音识别·gmm·混合高斯模型
码上零乱1 小时前
跟着小码学算法Day19:路径总和
java·数据结构·算法
徐凤年lll2 小时前
python 初学2
开发语言·python
天选之女wow2 小时前
【代码随想录算法训练营——Day53】图论——110.字符串接龙、105.有向图的完全可达性、106.岛屿的周长
算法·深度优先·图论
安迪西嵌入式2 小时前
数据平滑处理算法03——中心移动平均
java·前端·算法