扩散模型 diffusion model

模型原理

基于扩散模型实现 AI 绘画包括两个过程------加噪过程和去噪过程。

e.墨水->热水

每一步的加噪结果仅依赖于上一步的加噪结果和一个加噪过程,而这个加噪过程依赖于当前时间步 t,因此整个加噪过程可以看成参数化的马尔科夫链。

马尔可夫链:数学模型,用于描述随机事件的序列,其中每个事件的概率仅取决于上一个事件的状态,而与过去的事件无关。

扩散模型 vs GAN

训练与推理

加噪-训练环节

对于一张干净的图像,可以仅通过一次计算得到任意 t 步加噪声的结果。

训练:假定我们已经收集了一个用于训练扩散模型的训练集,整个训练过程便是不断重复下面这六个步骤。

  1. 每次从数据集中随机抽取一张图片。

  2. 随机从 1 至 1000 中选择一个时间步 t。

  3. 随机生成一个高斯噪声。

  4. 根据上述加噪环节的公式,一次计算直接得到第 t 步加噪的结果图像。

  5. 将时间步 t 和加噪图像作为 UNet 的输入去预测一个噪声值。

  6. 使用第五步预测的噪声值和第三步随机生成的噪声值,计算数值误差,并回传梯度。

去噪-推理环节

如何根据当前时间步的噪声图预测上一步加入的噪声?

希望得到这样一个模型,输入第 t 步加噪结果和时间步 t,预测从第 t-1 步到第 t 步噪声值。主流的方法是训练一个 UNet 模型来预测噪声图。因为噪声值和输入图的分辨率是一致的,而 UNet 模型常用于图像分割任务,输入输出的分辨率相同,使用 UNet 来完成这个任务再合适不过了。

如何在当前时间步的噪声图上去除这些噪声?

采样器,根据加噪结果和噪声值,准确地去除噪声。

推理:

  1. 我们随机生成一个高斯噪声,作为第 1000 步加噪之后的结果。

  2. 将这个噪声和时间步 1000 作为已经训练好的 UNet 的输入,预测第 999 步引入的噪声。

  3. 使用采样器在步骤 1 的高斯噪声中去除步骤 2 预测的噪声,得到一张干净一点的图像。

相关推荐
DisonTangor1 分钟前
腾讯混元3D-1.0:文本到三维和图像到三维生成的统一框架
人工智能·3d·aigc
itwangyang5208 分钟前
2024 - pathlinkR:差异分析 + 蛋白互作 + 功能富集网络可视化
人工智能
坚定信念,勇往无前9 分钟前
AI-Prompt、RAG、微调还是重新训练?选择正确的生成式AI的使用方法
人工智能·prompt
-喵侠客-15 分钟前
探索开源MiniMind项目:让大语言模型不再神秘(1)
人工智能·深度学习·语言模型·自然语言处理
大山同学16 分钟前
HE-Drive:Human-Like End-to-End Driving with Vision Language Models
人工智能·语言模型·自然语言处理
AI狂热爱好者25 分钟前
Meta 上周宣布正式开源小型语言模型 MobileLLM 系列
人工智能·ai·语言模型·自然语言处理·gpu算力
光锥智能26 分钟前
腾讯混元宣布大语言模型和3D模型正式开源
人工智能·语言模型·自然语言处理
新手小白勇闯新世界28 分钟前
论文阅读-用于图像识别的深度残差学习
论文阅读·人工智能·深度学习·学习·计算机视觉
大拨鼠31 分钟前
【多模态读论文系列】LLaMA-Adapter V2论文笔记
论文阅读·人工智能·llama
小嗷犬33 分钟前
【论文笔记】Dense Connector for MLLMs
论文阅读·人工智能·语言模型·大模型·多模态