扩散模型 diffusion model

模型原理

基于扩散模型实现 AI 绘画包括两个过程------加噪过程和去噪过程。

e.墨水->热水

每一步的加噪结果仅依赖于上一步的加噪结果和一个加噪过程,而这个加噪过程依赖于当前时间步 t,因此整个加噪过程可以看成参数化的马尔科夫链。

马尔可夫链:数学模型,用于描述随机事件的序列,其中每个事件的概率仅取决于上一个事件的状态,而与过去的事件无关。

扩散模型 vs GAN

训练与推理

加噪-训练环节

对于一张干净的图像,可以仅通过一次计算得到任意 t 步加噪声的结果。

训练:假定我们已经收集了一个用于训练扩散模型的训练集,整个训练过程便是不断重复下面这六个步骤。

  1. 每次从数据集中随机抽取一张图片。

  2. 随机从 1 至 1000 中选择一个时间步 t。

  3. 随机生成一个高斯噪声。

  4. 根据上述加噪环节的公式,一次计算直接得到第 t 步加噪的结果图像。

  5. 将时间步 t 和加噪图像作为 UNet 的输入去预测一个噪声值。

  6. 使用第五步预测的噪声值和第三步随机生成的噪声值,计算数值误差,并回传梯度。

去噪-推理环节

如何根据当前时间步的噪声图预测上一步加入的噪声?

希望得到这样一个模型,输入第 t 步加噪结果和时间步 t,预测从第 t-1 步到第 t 步噪声值。主流的方法是训练一个 UNet 模型来预测噪声图。因为噪声值和输入图的分辨率是一致的,而 UNet 模型常用于图像分割任务,输入输出的分辨率相同,使用 UNet 来完成这个任务再合适不过了。

如何在当前时间步的噪声图上去除这些噪声?

采样器,根据加噪结果和噪声值,准确地去除噪声。

推理:

  1. 我们随机生成一个高斯噪声,作为第 1000 步加噪之后的结果。

  2. 将这个噪声和时间步 1000 作为已经训练好的 UNet 的输入,预测第 999 步引入的噪声。

  3. 使用采样器在步骤 1 的高斯噪声中去除步骤 2 预测的噪声,得到一张干净一点的图像。

相关推荐
硬件学长森哥13 小时前
Android影像基础--cameraAPI2核心流程
android·计算机视觉
昨日之日200613 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
深圳市快瞳科技有限公司14 小时前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
SEO_juper16 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号17 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha17 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云17 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊17 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint17 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
AndrewHZ17 小时前
【图像处理基石】图像在频域处理和增强时,如何避免频谱混叠?
图像处理·计算机视觉·傅里叶分析·图像增强·频域处理·摩尔纹·频谱混叠