扩散模型 diffusion model

模型原理

基于扩散模型实现 AI 绘画包括两个过程------加噪过程和去噪过程。

e.墨水->热水

每一步的加噪结果仅依赖于上一步的加噪结果和一个加噪过程,而这个加噪过程依赖于当前时间步 t,因此整个加噪过程可以看成参数化的马尔科夫链。

马尔可夫链:数学模型,用于描述随机事件的序列,其中每个事件的概率仅取决于上一个事件的状态,而与过去的事件无关。

扩散模型 vs GAN

训练与推理

加噪-训练环节

对于一张干净的图像,可以仅通过一次计算得到任意 t 步加噪声的结果。

训练:假定我们已经收集了一个用于训练扩散模型的训练集,整个训练过程便是不断重复下面这六个步骤。

  1. 每次从数据集中随机抽取一张图片。

  2. 随机从 1 至 1000 中选择一个时间步 t。

  3. 随机生成一个高斯噪声。

  4. 根据上述加噪环节的公式,一次计算直接得到第 t 步加噪的结果图像。

  5. 将时间步 t 和加噪图像作为 UNet 的输入去预测一个噪声值。

  6. 使用第五步预测的噪声值和第三步随机生成的噪声值,计算数值误差,并回传梯度。

去噪-推理环节

如何根据当前时间步的噪声图预测上一步加入的噪声?

希望得到这样一个模型,输入第 t 步加噪结果和时间步 t,预测从第 t-1 步到第 t 步噪声值。主流的方法是训练一个 UNet 模型来预测噪声图。因为噪声值和输入图的分辨率是一致的,而 UNet 模型常用于图像分割任务,输入输出的分辨率相同,使用 UNet 来完成这个任务再合适不过了。

如何在当前时间步的噪声图上去除这些噪声?

采样器,根据加噪结果和噪声值,准确地去除噪声。

推理:

  1. 我们随机生成一个高斯噪声,作为第 1000 步加噪之后的结果。

  2. 将这个噪声和时间步 1000 作为已经训练好的 UNet 的输入,预测第 999 步引入的噪声。

  3. 使用采样器在步骤 1 的高斯噪声中去除步骤 2 预测的噪声,得到一张干净一点的图像。

相关推荐
落叶,听雪6 小时前
性价比高的软著助手供应商选哪家
大数据·人工智能·python
懒羊羊吃辣条6 小时前
充分利用未来已知信息:DAG 用双因果结构把 TSF-X 时序预测推到新高度
人工智能·深度学习·机器学习
易晨 微盛·企微管家6 小时前
汽车经销服务实战案例解析|企业微信AI SCRM助力实现咨询标准化与即时化
人工智能
阳艳讲ai6 小时前
九尾狐AI智能获客白皮书:重构企业增长新引擎
大数据·人工智能
老蒋每日coding6 小时前
AI Agent 设计模式系列(十二)—— 异常处理和恢复模式
人工智能·设计模式
人工智能AI技术6 小时前
【Agent从入门到实践】20 LLM的基础使用:API调用(OpenAI、国产大模型),程序员快速上手
人工智能·python
云上凯歌6 小时前
01_AI工具平台项目概述.md
人工智能·python·uni-app
qunaa01016 小时前
【深度学习】基于Sparse-RCNN的多类别蘑菇物种识别与检测系统_2
人工智能·深度学习·目标跟踪
薛不痒6 小时前
深度学习的补充
人工智能·深度学习
_codemonster6 小时前
分布式深度学习训练框架Horovod
人工智能·分布式·深度学习