扩散模型 diffusion model

模型原理

基于扩散模型实现 AI 绘画包括两个过程------加噪过程和去噪过程。

e.墨水->热水

每一步的加噪结果仅依赖于上一步的加噪结果和一个加噪过程,而这个加噪过程依赖于当前时间步 t,因此整个加噪过程可以看成参数化的马尔科夫链。

马尔可夫链:数学模型,用于描述随机事件的序列,其中每个事件的概率仅取决于上一个事件的状态,而与过去的事件无关。

扩散模型 vs GAN

训练与推理

加噪-训练环节

对于一张干净的图像,可以仅通过一次计算得到任意 t 步加噪声的结果。

训练:假定我们已经收集了一个用于训练扩散模型的训练集,整个训练过程便是不断重复下面这六个步骤。

  1. 每次从数据集中随机抽取一张图片。

  2. 随机从 1 至 1000 中选择一个时间步 t。

  3. 随机生成一个高斯噪声。

  4. 根据上述加噪环节的公式,一次计算直接得到第 t 步加噪的结果图像。

  5. 将时间步 t 和加噪图像作为 UNet 的输入去预测一个噪声值。

  6. 使用第五步预测的噪声值和第三步随机生成的噪声值,计算数值误差,并回传梯度。

去噪-推理环节

如何根据当前时间步的噪声图预测上一步加入的噪声?

希望得到这样一个模型,输入第 t 步加噪结果和时间步 t,预测从第 t-1 步到第 t 步噪声值。主流的方法是训练一个 UNet 模型来预测噪声图。因为噪声值和输入图的分辨率是一致的,而 UNet 模型常用于图像分割任务,输入输出的分辨率相同,使用 UNet 来完成这个任务再合适不过了。

如何在当前时间步的噪声图上去除这些噪声?

采样器,根据加噪结果和噪声值,准确地去除噪声。

推理:

  1. 我们随机生成一个高斯噪声,作为第 1000 步加噪之后的结果。

  2. 将这个噪声和时间步 1000 作为已经训练好的 UNet 的输入,预测第 999 步引入的噪声。

  3. 使用采样器在步骤 1 的高斯噪声中去除步骤 2 预测的噪声,得到一张干净一点的图像。

相关推荐
jndingxin7 分钟前
OpenCV 图形API(63)图像结构分析和形状描述符------计算图像中非零像素的边界框函数boundingRect()
人工智能·opencv·计算机视觉
旧故新长12 分钟前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
微学AI24 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆36 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤39 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创41 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao1 小时前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能