Spark中的宽窄依赖

一、什么是依赖关系

这里通过一张图来解释:

result_rdd是由tuple_rdd使用reduceByKey算子得到的, 而tuple_rdd是由word_rdd使用map算子得到的,word_rdd又是由input_rdd使用flatMap算子得到的。它们之间的关系就称为依赖关系!

二、什么是宽窄依赖

  • 窄依赖:父RDD的一个分区的数据只给了子RDD的一个分区 【不用经过Shuffle】

特点:一对一或者多对一不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等

一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

  • 宽依赖:父RDD的一个分区的数据给了子RDD的多个分区【需要调用Shuffle的分区器来实现】

特点:一对多,必须经过Shuffle,性能相对较慢,可以实现全 局分区、排序、分组等

Spark的job中按照宽依赖来划分 Stage

宽窄依赖本质:只是一种标记,标记两个RDD之间的依赖关系

三、为什么要标记宽窄关系

1、提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

**举例:**如果子RDD的某个分区的数据丢失

  • 不标记:不清楚父RDD与子RDD数据之间的关系,必须重新构建整个父RDD所有数据
  • 标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2、提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

**举例:**如果RDD需要多个map、flatMap、filter、 reduceByKey、sortByKey等算子的转换操作

  • 不标记:每个转换不知道会不会经过Shuffle,都使用不同的 Task来完成,每个Task的结果要保存到磁盘
  • 标记了:多个连续窄依赖算子放在一个Stage中,共用一套 Task在内存中完成所有转换,性能更快。
相关推荐
小北方城市网5 分钟前
Elasticsearch 分布式检索生产级优化:从索引设计到查询性能
java·大数据·运维·redis·分布式·elasticsearch·搜索引擎
大志哥1236 分钟前
使用logstash和elasticsearch实现日志链路(一)
大数据·elasticsearch·搜索引擎
2401_8353024815 分钟前
击穿测试护航,解锁薄膜聚合物的安全密码
大数据·人工智能·功能测试·安全·制造·材料工程
电商API_1800790524722 分钟前
得物商品详情API接入与优化实战指南
大数据·数据库·人工智能·数据分析·网络爬虫
程途拾光15830 分钟前
中文用户常用在线流程图工具PC端高效制作各类业务流程图方法
大数据·论文阅读·人工智能·信息可视化·流程图·课程设计
啊吧怪不啊吧2 小时前
极致性能的服务器Redis之String类型及相关指令介绍
网络·数据库·redis·分布式·mybatis
IUGEI3 小时前
从原理到落地:DAG在大数据SLA中的应用
java·大数据·数据结构·后端·算法
珠海西格电力9 小时前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
BUTCHER510 小时前
Filebeat输出Kafka配置
分布式·kafka
集和诚JHCTECH11 小时前
边缘智能,触手可及|BRAV-7821高能效AI边缘计算系统正式发布
大数据·人工智能·边缘计算