Spark中的宽窄依赖

一、什么是依赖关系

这里通过一张图来解释:

result_rdd是由tuple_rdd使用reduceByKey算子得到的, 而tuple_rdd是由word_rdd使用map算子得到的,word_rdd又是由input_rdd使用flatMap算子得到的。它们之间的关系就称为依赖关系!

二、什么是宽窄依赖

  • 窄依赖:父RDD的一个分区的数据只给了子RDD的一个分区 【不用经过Shuffle】

特点:一对一或者多对一不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等

一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

  • 宽依赖:父RDD的一个分区的数据给了子RDD的多个分区【需要调用Shuffle的分区器来实现】

特点:一对多,必须经过Shuffle,性能相对较慢,可以实现全 局分区、排序、分组等

Spark的job中按照宽依赖来划分 Stage

宽窄依赖本质:只是一种标记,标记两个RDD之间的依赖关系

三、为什么要标记宽窄关系

1、提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

**举例:**如果子RDD的某个分区的数据丢失

  • 不标记:不清楚父RDD与子RDD数据之间的关系,必须重新构建整个父RDD所有数据
  • 标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2、提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

**举例:**如果RDD需要多个map、flatMap、filter、 reduceByKey、sortByKey等算子的转换操作

  • 不标记:每个转换不知道会不会经过Shuffle,都使用不同的 Task来完成,每个Task的结果要保存到磁盘
  • 标记了:多个连续窄依赖算子放在一个Stage中,共用一套 Task在内存中完成所有转换,性能更快。
相关推荐
塔能物联运维2 分钟前
隧道照明“智能进化”:PLC 通信 + AI 调光守护夜间通行生命线
大数据·人工智能
highly200912 分钟前
Gitflow
大数据·elasticsearch·搜索引擎
短剑重铸之日40 分钟前
《7天学会Redis》特别篇: Redis分布式锁
java·redis·分布式·后端·缓存·redission·看门狗机制
humors2211 小时前
韩秀云老师谈买黄金
大数据·程序人生
重生之绝世牛码1 小时前
Linux软件安装 —— SSH免密登录
大数据·linux·运维·ssh·软件安装·免密登录
StarChainTech1 小时前
无人机租赁平台:开启智能租赁新时代
大数据·人工智能·微信小程序·小程序·无人机·软件需求
Hello.Reader2 小时前
Flink DynamoDB Connector 用 Streams 做 CDC,用 BatchWriteItem 高吞吐写回
大数据·python·flink
早日退休!!!2 小时前
内存泄露(Memory Leak)核心原理与工程实践报告
大数据·网络
发哥来了2 小时前
主流AI视频生成工具商用化能力评测:五大关键维度对比分析
大数据·人工智能·音视频
無森~2 小时前
MapReduce
大数据·mapreduce