Spark中的宽窄依赖

一、什么是依赖关系

这里通过一张图来解释:

result_rdd是由tuple_rdd使用reduceByKey算子得到的, 而tuple_rdd是由word_rdd使用map算子得到的,word_rdd又是由input_rdd使用flatMap算子得到的。它们之间的关系就称为依赖关系!

二、什么是宽窄依赖

  • 窄依赖:父RDD的一个分区的数据只给了子RDD的一个分区 【不用经过Shuffle】

特点:一对一或者多对一不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等

一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

  • 宽依赖:父RDD的一个分区的数据给了子RDD的多个分区【需要调用Shuffle的分区器来实现】

特点:一对多,必须经过Shuffle,性能相对较慢,可以实现全 局分区、排序、分组等

Spark的job中按照宽依赖来划分 Stage

宽窄依赖本质:只是一种标记,标记两个RDD之间的依赖关系

三、为什么要标记宽窄关系

1、提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

**举例:**如果子RDD的某个分区的数据丢失

  • 不标记:不清楚父RDD与子RDD数据之间的关系,必须重新构建整个父RDD所有数据
  • 标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2、提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

**举例:**如果RDD需要多个map、flatMap、filter、 reduceByKey、sortByKey等算子的转换操作

  • 不标记:每个转换不知道会不会经过Shuffle,都使用不同的 Task来完成,每个Task的结果要保存到磁盘
  • 标记了:多个连续窄依赖算子放在一个Stage中,共用一套 Task在内存中完成所有转换,性能更快。
相关推荐
Coder_Boy_4 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2501_944934734 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
九河云5 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
Gain_chance5 小时前
36-学习笔记尚硅谷数仓搭建-DWS层数据装载脚本
大数据·数据仓库·笔记·学习
每日新鲜事6 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
AI架构全栈开发实战笔记7 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化
AI架构全栈开发实战笔记7 小时前
Eureka 对大数据领域服务依赖关系的梳理
大数据·ai·云原生·eureka
自挂东南枝�7 小时前
政企舆情大数据服务平台的“全域洞察中枢”
大数据
weisian1518 小时前
Elasticsearch-1--什么是ES?
大数据·elasticsearch·搜索引擎
LaughingZhu8 小时前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营