Spark中的宽窄依赖

一、什么是依赖关系

这里通过一张图来解释:

result_rdd是由tuple_rdd使用reduceByKey算子得到的, 而tuple_rdd是由word_rdd使用map算子得到的,word_rdd又是由input_rdd使用flatMap算子得到的。它们之间的关系就称为依赖关系!

二、什么是宽窄依赖

  • 窄依赖:父RDD的一个分区的数据只给了子RDD的一个分区 【不用经过Shuffle】

特点:一对一或者多对一不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等

一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

  • 宽依赖:父RDD的一个分区的数据给了子RDD的多个分区【需要调用Shuffle的分区器来实现】

特点:一对多,必须经过Shuffle,性能相对较慢,可以实现全 局分区、排序、分组等

Spark的job中按照宽依赖来划分 Stage

宽窄依赖本质:只是一种标记,标记两个RDD之间的依赖关系

三、为什么要标记宽窄关系

1、提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

**举例:**如果子RDD的某个分区的数据丢失

  • 不标记:不清楚父RDD与子RDD数据之间的关系,必须重新构建整个父RDD所有数据
  • 标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2、提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

**举例:**如果RDD需要多个map、flatMap、filter、 reduceByKey、sortByKey等算子的转换操作

  • 不标记:每个转换不知道会不会经过Shuffle,都使用不同的 Task来完成,每个Task的结果要保存到磁盘
  • 标记了:多个连续窄依赖算子放在一个Stage中,共用一套 Task在内存中完成所有转换,性能更快。
相关推荐
赵部长风向标9 分钟前
在本地生活赛道,如何打造属于自己的业务护城河?
大数据
青云交21 分钟前
Java 大视界 -- Java 大数据在智能教育学习社区互动模式创新与用户活跃度提升中的应用(426)
java·大数据·学习·flink 实时计算·智能教育社区·互动模式创新·用户活跃度
snowful world3 小时前
flink实验三:实时数据流处理(踩坑记录)
大数据·flink
B站_计算机毕业设计之家3 小时前
基于大数据的短视频数据分析系统 Spark哔哩哔哩视频数据分析可视化系统 Hadoop大数据技术 情感分析 舆情分析 爬虫 推荐系统 协同过滤推荐算法 ✅
大数据·hadoop·爬虫·spark·音视频·短视频·1024程序员节
一晌小贪欢5 小时前
Python爬虫第10课:分布式爬虫架构与Scrapy-Redis
分布式·爬虫·python·网络爬虫·python爬虫·python3
面向星辰5 小时前
day07 spark sql
大数据·sql·spark
北邮-吴怀玉5 小时前
2.2.2.3 大数据方法论与实践指南-开源服务跟踪工具对比
大数据·开源
亚远景aspice6 小时前
亚远景热烈祝贺保隆科技通过ASPICE CL2评估
大数据·人工智能·物联网
赵谨言7 小时前
基于python大数据的城市扬尘数宇化监控系统的设计与开发
大数据·开发语言·经验分享·python
程序员小羊!7 小时前
Flink状态编程之算子状态(OperatorState)
大数据·flink