Kubernetes运行大数据组件-运行spark

在Kubernetes上运行Spark作业,你需要创建一个Spark的部署和相应的Kubernetes资源。以下是一个简化的例子,展示了如何使用Kubernetes部署Spark Driver和Executor。

首先,确保你有一个运行中的Kubernetes集群,并且kubectl 命令行工具已经配置好可以与集群通信。

创建Spark的配置 ConfigMap:

apiVersion: v1

kind: ConfigMap

metadata:

name: spark-config

data:

spark-defaults.conf: |

spark.kubernetes.driver.pod.name=spark-driver-pod

spark.kubernetes.executor.pod.namespace=default

...

创建Spark Driver的部署:

apiVersion: apps/v1

kind: Deployment

metadata:

name: spark-driver

spec:

replicas: 1

template:

metadata:

labels:

component: spark

node: driver

spec:

containers:

  • name: spark-kubernetes-driver

image: gcr.io/spark-operator/spark-driver:v2.4.5

command: ["/bin/spark-submit"]

args: [

"--master", "k8s",

"--deploy-mode", "cluster",

"--name", "spark-job",

"--class", "org.apache.spark.examples.SparkPi",

"--conf", "spark.kubernetes.driver.pod.name=spark-driver-pod",

...

"local:///path/to/your/spark/job.jar"

]

env:

  • name: SPARK_CONF_DIR

value: "/opt/spark/conf"

volumeMounts:

  • name: spark-config-volume

mountPath: /opt/spark/conf

volumes:

  • name: spark-config-volume

configMap:

name: spark-config

创建Spark Executor的部署:

apiVersion: apps/v1

kind: Deployment

metadata:

name: spark-executors

spec:

replicas: 2

template:

metadata:

labels:

component: spark

node: executor

spec:

containers:

  • name: spark-kubernetes-executor

image: gcr.io/spark-operator/spark-executor:v2.4.5

env:

  • name: SPARK_K8S_EXECUTOR_POD_NAME

valueFrom:

fieldRef:

fieldPath: metadata.name

  • name: SPARK_CONF_DIR

value: "/opt/spark/conf"

volumeMounts:

  • name: spark-config-volume

mountPath: /opt/spark/conf

volumes:

  • name: spark-config-volume

configMap:

name: spark-config

确保替换以上配置中的镜像版本和Spark作业的jar路径以及参数。这些YAML文件定义了Spark作业在Kubernetes上的基本部署,包括配置、驱动器和执行器的部署。

要运行这些部署,只需将这些YAML文件应用到你的Kubernetes集群:

kubectl apply -f spark-config.yaml

kubectl apply -f spark-driver.yaml

kubectl apply -f spark-executors.yaml

这将启动一个Spark作业,其中包括一个Driver和多个Executor。Kubernetes将负责调度和管理这些容器的生命周期。

相关推荐
pale_moonlight9 小时前
十、 Scala 应用实践 (上)
大数据·开发语言·scala
会飞的小蛮猪10 小时前
Ubuntu24.04 基于Containerd部署K8s1.34(私服部署)
docker·云原生·kubernetes
第二只羽毛10 小时前
遵守robots协议的友好爬虫
大数据·爬虫·python·算法·网络爬虫
Elastic 中国社区官方博客10 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
安达发公司11 小时前
安达发|告别手工排产!车间排产软件成为中央厨房的“最强大脑”
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·车间排产软件
武子康11 小时前
大数据-166 Apache Kylin 1.6 Streaming Cubing 实战:Kafka 到分钟级 OLAP
大数据·后端·apache kylin
啊吧怪不啊吧11 小时前
SQL之表的字符串内置函数详解
大数据·数据库·sql
亿坊电商12 小时前
24H-无人共享KTV:如何实现安全的自助服务?
大数据·物联网·安全
草莓熊Lotso14 小时前
Git 分支管理:从基础操作到协作流程(本地篇)
大数据·服务器·开发语言·c++·人工智能·git·sql
青云交21 小时前
Java 大视界 -- Java 大数据在智能物流无人配送车路径规划与协同调度中的应用
java·spark·路径规划·大数据分析·智能物流·无人配送车·协同调度