Kubernetes运行大数据组件-运行spark

在Kubernetes上运行Spark作业,你需要创建一个Spark的部署和相应的Kubernetes资源。以下是一个简化的例子,展示了如何使用Kubernetes部署Spark Driver和Executor。

首先,确保你有一个运行中的Kubernetes集群,并且kubectl 命令行工具已经配置好可以与集群通信。

创建Spark的配置 ConfigMap:

apiVersion: v1

kind: ConfigMap

metadata:

name: spark-config

data:

spark-defaults.conf: |

spark.kubernetes.driver.pod.name=spark-driver-pod

spark.kubernetes.executor.pod.namespace=default

...

创建Spark Driver的部署:

apiVersion: apps/v1

kind: Deployment

metadata:

name: spark-driver

spec:

replicas: 1

template:

metadata:

labels:

component: spark

node: driver

spec:

containers:

  • name: spark-kubernetes-driver

image: gcr.io/spark-operator/spark-driver:v2.4.5

command: ["/bin/spark-submit"]

args: [

"--master", "k8s",

"--deploy-mode", "cluster",

"--name", "spark-job",

"--class", "org.apache.spark.examples.SparkPi",

"--conf", "spark.kubernetes.driver.pod.name=spark-driver-pod",

...

"local:///path/to/your/spark/job.jar"

]

env:

  • name: SPARK_CONF_DIR

value: "/opt/spark/conf"

volumeMounts:

  • name: spark-config-volume

mountPath: /opt/spark/conf

volumes:

  • name: spark-config-volume

configMap:

name: spark-config

创建Spark Executor的部署:

apiVersion: apps/v1

kind: Deployment

metadata:

name: spark-executors

spec:

replicas: 2

template:

metadata:

labels:

component: spark

node: executor

spec:

containers:

  • name: spark-kubernetes-executor

image: gcr.io/spark-operator/spark-executor:v2.4.5

env:

  • name: SPARK_K8S_EXECUTOR_POD_NAME

valueFrom:

fieldRef:

fieldPath: metadata.name

  • name: SPARK_CONF_DIR

value: "/opt/spark/conf"

volumeMounts:

  • name: spark-config-volume

mountPath: /opt/spark/conf

volumes:

  • name: spark-config-volume

configMap:

name: spark-config

确保替换以上配置中的镜像版本和Spark作业的jar路径以及参数。这些YAML文件定义了Spark作业在Kubernetes上的基本部署,包括配置、驱动器和执行器的部署。

要运行这些部署,只需将这些YAML文件应用到你的Kubernetes集群:

kubectl apply -f spark-config.yaml

kubectl apply -f spark-driver.yaml

kubectl apply -f spark-executors.yaml

这将启动一个Spark作业,其中包括一个Driver和多个Executor。Kubernetes将负责调度和管理这些容器的生命周期。

相关推荐
成长的小牛23335 分钟前
es使用knn向量检索中numCandidates和k应该如何配比更合适
大数据·elasticsearch·搜索引擎
goTsHgo1 小时前
在 Spark 上实现 Graph Embedding
大数据·spark·embedding
程序猿小柒1 小时前
【Spark】Spark SQL执行计划-精简版
大数据·sql·spark
隔着天花板看星星1 小时前
Spark-Streaming集成Kafka
大数据·分布式·中间件·spark·kafka
奥顺1 小时前
PHPUnit使用指南:编写高效的单元测试
大数据·mysql·开源·php
小屁孩大帅-杨一凡1 小时前
Flink 简介和简单的demo
大数据·flink
天冬忘忧1 小时前
Flink调优----反压处理
大数据·flink
sinat_307021531 小时前
大数据政策文件——职业道德(山东省大数据职称考试)
大数据·职场和发展
SeaTunnel1 小时前
某医疗行业用户基于Apache SeaTunnel从调研选型到企业数据集成框架的落地实践
大数据
Elastic 中国社区官方博客2 小时前
Elasticsearch:什么是查询语言?
大数据·数据库·elasticsearch·搜索引擎·oracle