LSTM:解决梯度消失与长期依赖问题

LSTM(长短期记忆网络)是一种递归神经网络,设计用来解决梯度消失和长期依赖问题。

梯度消失:在反向传播过程中,由于链式法则,较早层的梯度小于1,连乘后数次迭代会导致梯度趋于0,使得网络很难学习早期信息。

长期依赖问题:传统神经网络在处理长序列数据时,梯度更新往往受限于短期依赖,难以有效学习长期依赖关系。

LSTM通过增加一个"遗忘门"、"输入门"和"输出门"来解决这些问题。它使用一个称为"单元状态"的隐藏状态,该状态可以记住长期信息。

以下是一个简单的LSTM单元的Python代码示例,使用PyTorch框架:

import torch

import torch.nn as nn

class LSTMCell(nn.Module):

def init(self, input_size, hidden_size):

super(LSTMCell, self).init()

self.hidden_size = hidden_size

self.input2hidden = nn.Linear(input_size + hidden_size, hidden_size)

self.input2cell = nn.Linear(input_size, hidden_size)

self.hidden2cell = nn.Linear(hidden_size, hidden_size)

def forward(self, input, hidden):

h, c = hidden

combined = torch.cat((input, h), dim=1) # concatenate along dimension 1 (channel dimension)

Input Gate

i = torch.sigmoid(self.input2hidden(combined))

Forget Gate

f = torch.sigmoid(self.input2cell(input) + self.hidden2cell(h))

New Cell State

new_c = f * c + i * torch.tanh(self.input2cell(combined))

Output Gate

o = torch.sigmoid(self.input2hidden(combined))

New Hidden State

new_h = o * torch.tanh(new_c)

return new_h, (new_h, new_c)

Example usage

input_size = 10

hidden_size = 20

lstm_cell = LSTMCell(input_size, hidden_size)

input = torch.randn(5, 3, input_size) # seq_len = 5, batch_size = 3

h0 = torch.randn(3, hidden_size)

c0 = torch.randn(3, hidden_size)

hidden_state = (h0, c0)

for input_step in input:

hidden_state = lstm_cell(input_step, hidden_state)

Output is the new hidden state

print(hidden_state[0])

这段代码定义了一个基本的LSTM单元,它接受一个输入序列和一个初始隐藏状态。然后,它遍历输入序列,逐个步骤地计算新的隐藏状态。这个例子中没有使用PyTorch提供的nn.LSTMCell模块,而是手动实现了LSTM单元的基本组成部分,以便更好地理解LSTM的工作原理。

相关推荐
BYSJMG18 小时前
计算机大数据毕业设计选题:基于Spark+hadoop的全球香水市场趋势分析系统
大数据·vue.js·hadoop·python·spark·django·课程设计
二向箔reverse18 小时前
深度学习与 OpenCV 的深度羁绊:从技术协同到代码实践
人工智能·深度学习·opencv
小白学大数据18 小时前
Scrapy框架实战:大规模爬取华为应用市场应用详情数据
开发语言·爬虫·python·scrapy·华为
Coovally AI模型快速验证18 小时前
突破闭集限制:3D-MOOD 实现开集单目 3D 检测新 SOTA
人工智能·yolo·计算机视觉·3d·目标跟踪·无人机
亚马逊云开发者18 小时前
基于 CoT 协调多 MCP Tool — 智能运维 Redshift
人工智能
ai绘画-安安妮18 小时前
AI工程师必看!GitHub上10个高价值LLM开源项目,建议立即收藏
人工智能·学习·程序员·开源·大模型·github·转行
小言从不摸鱼18 小时前
Grok-4 :AI 基准测试霸主,速度与智能并存——但代价几何?
人工智能·gpt·深度学习·语言模型·自然语言处理
DG_DH16818 小时前
企业级AI应用,Dify集成RAGFlow知识库保姆教程
人工智能·知识库·dify·ragflow
大翻哥哥18 小时前
Python 2025:AI代理、Rust与异步编程的新时代
开发语言·人工智能·python
我是海飞18 小时前
TensorFlow的Yes/No 关键词识别模型训练
人工智能·python·tensorflow·语音识别·neo4j