LSTM:解决梯度消失与长期依赖问题

LSTM(长短期记忆网络)是一种递归神经网络,设计用来解决梯度消失和长期依赖问题。

梯度消失:在反向传播过程中,由于链式法则,较早层的梯度小于1,连乘后数次迭代会导致梯度趋于0,使得网络很难学习早期信息。

长期依赖问题:传统神经网络在处理长序列数据时,梯度更新往往受限于短期依赖,难以有效学习长期依赖关系。

LSTM通过增加一个"遗忘门"、"输入门"和"输出门"来解决这些问题。它使用一个称为"单元状态"的隐藏状态,该状态可以记住长期信息。

以下是一个简单的LSTM单元的Python代码示例,使用PyTorch框架:

import torch

import torch.nn as nn

class LSTMCell(nn.Module):

def init(self, input_size, hidden_size):

super(LSTMCell, self).init()

self.hidden_size = hidden_size

self.input2hidden = nn.Linear(input_size + hidden_size, hidden_size)

self.input2cell = nn.Linear(input_size, hidden_size)

self.hidden2cell = nn.Linear(hidden_size, hidden_size)

def forward(self, input, hidden):

h, c = hidden

combined = torch.cat((input, h), dim=1) # concatenate along dimension 1 (channel dimension)

Input Gate

i = torch.sigmoid(self.input2hidden(combined))

Forget Gate

f = torch.sigmoid(self.input2cell(input) + self.hidden2cell(h))

New Cell State

new_c = f * c + i * torch.tanh(self.input2cell(combined))

Output Gate

o = torch.sigmoid(self.input2hidden(combined))

New Hidden State

new_h = o * torch.tanh(new_c)

return new_h, (new_h, new_c)

Example usage

input_size = 10

hidden_size = 20

lstm_cell = LSTMCell(input_size, hidden_size)

input = torch.randn(5, 3, input_size) # seq_len = 5, batch_size = 3

h0 = torch.randn(3, hidden_size)

c0 = torch.randn(3, hidden_size)

hidden_state = (h0, c0)

for input_step in input:

hidden_state = lstm_cell(input_step, hidden_state)

Output is the new hidden state

print(hidden_state[0])

这段代码定义了一个基本的LSTM单元,它接受一个输入序列和一个初始隐藏状态。然后,它遍历输入序列,逐个步骤地计算新的隐藏状态。这个例子中没有使用PyTorch提供的nn.LSTMCell模块,而是手动实现了LSTM单元的基本组成部分,以便更好地理解LSTM的工作原理。

相关推荐
CodeLongBear1 分钟前
从Java后端到Python大模型:我的学习转型与规划
java·python·学习
新智元8 分钟前
ICML 2026史上最严新规:LLM不得列为作者,滥用AI直接退稿
人工智能·openai
ada7_13 分钟前
LeetCode(python)——49.字母异位词分组
java·python·leetcode
后端小肥肠15 分钟前
10W+育儿漫画是怎么做的?我用n8n搭建了自动化工作流,3分钟生成到本地磁盘
人工智能·aigc·agent
我的xiaodoujiao20 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 23--数据驱动--参数化处理 Yaml 文件
python·学习·测试工具·pytest
晨尘光28 分钟前
【pycharm 创建一个线程,在线程函数中增加的日志打印,日志打印了,但是打断点进不去】
ide·python·pycharm
钛投标免费AI标书工具40 分钟前
【官方认证】2025年AI标书工具:免费、零废标、安全
大数据·人工智能·安全
盼小辉丶44 分钟前
视觉Transformer实战——Vision Transformer(ViT)详解与实现
人工智能·深度学习·transformer
databook1 小时前
manim边做边学--文字创建销毁的打字机效果
后端·python·动效
爱思德学术1 小时前
第二届中欧科学家论坛暨第七届人工智能与先进制造国际会议(AIAM 2025)在德国海德堡成功举办
人工智能·算法·机器学习·语言模型