G2 基于生成对抗网络(GAN)人脸图像生成


基于生成对抗网络(GAN)人脸图像生成

这周将构建并训练一个生成对抗网络(GAN)来生成人脸图像。

GAN 原理概述

生成对抗网络通过两个神经网络的对抗性结构来实现目标:

  • 生成器(G):输入随机噪声,通过学习数据的分布模式生成类似真实图像的输出。
  • 判别器(D):用来判断输入的图像是真实的还是生成器生成的。

训练过程中,生成器尝试欺骗判别器,生成逼真的图像,而判别器则不断优化,以区分真实图像与生成图像。这种对抗过程最终使生成器的生成能力逐渐逼近真实图像。

环境准备

首先导入相关库并设置随机种子以确保结果的可复现性。

python 复制代码
import random
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import matplotlib.pyplot as plt
import numpy as np

超参数设置

在训练GAN之前,首先定义一些关键的超参数:

  • batch_size:每个批次的样本数。
  • image_size:图像的大小,用于调整输入数据的尺寸。
  • nz:潜在向量大小,即生成器的输入维度。
  • ngfndf:分别控制生成器和判别器中的特征图数量。
  • num_epochs:训练的总轮数。
  • lr:学习率。
python 复制代码
batch_size = 128
image_size = 64
nz = 100
ngf = 64
ndf = 64
num_epochs = 50
lr = 0.0002
beta1 = 0.5

数据加载

通过torchvision.datasets.ImageFolder加载数据,并使用 torch.utils.data.DataLoader 进行批量处理。数据加载时,通过转换函数调整图像大小,并对其进行归一化处理。

python 复制代码
dataroot = "data/GANdata"
dataset = dset.ImageFolder(root=dataroot,
                           transform=transforms.Compose([
                               transforms.Resize(image_size),
                               transforms.CenterCrop(image_size),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                           ]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)

网络结构定义

1. 生成器

生成器将随机噪声(潜在向量)通过一系列转置卷积层转换为图像。每层使用ReLU激活函数,最后一层用Tanh激活函数,将输出限制在 [-1, 1]

python 复制代码
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
            nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False),
            nn.Tanh()
        )

    def forward(self, input):
        return self.main(input)

2. 判别器

判别器为卷积网络,通过一系列卷积层提取图像特征。每层使用LeakyReLU激活函数,最终输出一个值(真实为1,生成为0)。

python 复制代码
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Conv2d(3, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

训练过程

训练分为两个部分:判别器和生成器的更新。

1. 判别器的训练

判别器首先接收真实图像样本,计算输出与真实标签的误差。然后判别器接收生成器生成的假图像,再计算输出与假标签的误差。最终判别器的损失是两者的总和。

python 复制代码
output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()

fake = netG(noise)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label.fill_(fake_label))
errD_fake.backward()

2. 生成器的训练

生成器的目标是欺骗判别器,因此其损失函数基于判别器将生成图像误识为真实的概率值。

python 复制代码
output = netD(fake).view(-1)
errG = criterion(output, label.fill_(real_label))
errG.backward()

训练监控与可视化

训练时,我们记录生成器和判别器的损失,并生成一些样本图像来查看生成器的效果。

python 复制代码
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G")
plt.plot(D_losses, label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.savefig('Generator and Discriminator Loss During Training.png')

结果可视化

训练结束后,我们将真实图像与生成图像对比,以检验生成器的效果。

python 复制代码
plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(), (1, 2, 0)))

plt.subplot(1, 2, 2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1], (1, 2, 0)))
plt.savefig('Fake Images.png')
plt.show()

总结

这周学习构建了一个深度卷积生成对抗网络(DCGAN),用于生成逼真的人脸图像,通过这周学习对对抗网路的构建有了更深的了解与运用

相关推荐
自由的疯几秒前
用 Java 构建你的第一个智能聊天机器人:AI 自然语言处理实战
人工智能
AgeClub20 分钟前
服务600+养老社区,Rendever如何通过“VR+养老”缓解老年孤独?
大数据·人工智能
巴里巴气23 分钟前
Python爬虫用Clash软件设置代理IP
爬虫·python·tcp/ip
rocksun30 分钟前
OneUptime MCP服务器:AI原生可观测性融入你的工作流程
人工智能·监控
weisian15138 分钟前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn
Whoisshutiao40 分钟前
Python网安-zip文件暴力破解(仅供学习)
开发语言·python·网络安全
静心问道1 小时前
SELF-INSTRUCT:使用自生成指令对齐语言模型
人工智能·语言模型·大模型
芷栀夏1 小时前
基于Anything LLM的本地知识库系统远程访问实现路径
数据库·人工智能
AI生存日记1 小时前
AI 日报:阿里、字节等企业密集发布新技术,覆盖语音、图像与药物研发等领域
人工智能·华为云·语音识别·open ai大模型
龙潜月七1 小时前
Selenium 自动化测试中跳过机器人验证的完整指南:能用
python·selenium·机器人