【抽代复习笔记】33-群(二十七):几道例题及不变子群的定义

命题:

设G为一个群,e是G中的单位元,a∈G,m,n,k∈Z₊,则:

(1)若|a|=k,a^m = e,则k|m;

(2)若m|k,n|k且(m,n)=1,则mn|k;

(3)若m|kn,(m,n)=1,则m|k。

【注:S₃中,|(12)|=2,|(123)|=3,但|(12)(123)| = 2,因此|ab|未必等于|a|×|b|。】

例1:设(G,o)是一个群,a,b∈G,且:

(1)a o b = b o a,|a| = m,|b| = n;

(2)(m,n) = 1。

证明:|a o b| = m×n。

证:设|a o b| = k,下证k = m×n。

(1)∵a o b = b o a,∴(a o b)^mn = a^mn o b^mn = (a^m)^n o (b^n)^m = e^n o e^m = e,

所以k|mn;

(2)∵(m,n) = 1,∴(根据上面的命题)只需证m|k且n|k,

a^kn = a^kn o e = a^kn o b^kn = (a o b)^kn = ((a o b)^k)^n = e,

∴有m|kn,同理可得n|km,

∴m|k,n|k(因为m与n互素),

所以mn|k。

综上所述,可得k = mn。

例2:设(G,o)是一个群,~是G中的一个等价关系(元之间),并且对任意的a,x₁,x₂∈G,由a o x₁ ~ a o x₂可推出x₁ ~ x₂。

证明,G中与单位元e等价的元所作成的集合是G的一个子群。

证:设H = {x∈G|x ~ e},往证H≤G,使用子群的第一判定定理:

(1)∵~是等价关系,具有自反性,∴e ~ e,∴e∈H,从而H≠∅;

(2)对∀a,b∈H,有a ~ e,b ~ e,

由b ~ e可得(左右两端均左乘(a^(-1) o a)):(a^(-1) o a) o b ~ (a^(-1) o a) o e = a^(-1) o a,

从而(两边消去a^(-1)):a o b ~ a,

又a ~ e,根据等价关系的传递性,可得a o b ~ e,

所以a o b∈H;

(3)对∀a∈H,有a ~ e,

从而a o e ~ a o a^(-1)(= e),两边消去a,得e ~ a^(-1),根据等价关系的对称性,有a^(-1) ~ e,所以a^(-1)∈H。

综上所述,根据子群的第一判定定理,可得H≤G。

不变子群和商群

例3:设H = {(1),(12)}≤S₃。

(1)写出H在S₃中的左陪集(1)H,(13)H,(23)H;

(2)写出H在S₃中的右陪集H(1),H(13),H(23);

(3)Sl = {(1)H,(13)H,(23)H}是否为H在S₃中的左陪集分解;

(4)Sr = {H(1),H(13),H(23)}是否为H在S₃中的右陪集分解;

(5)设S₃/H = {(1)H,(13)H,(23)H},规定aH·bH = (ab)H,判断S₃/H关于给定乘法能否作成群,若能,判断与哪个已知群同构。

(6)我们知,A₄/K₄关于左陪集乘法aK₄·bK₄ = (ab)K₄能作成群,与(5)比较结果。

解:(1)(1)H = {(1),(12)},(13)H = {(13),(123)},(23)H = {(123),(132)},

(2)H(1) = {(1),(12)},H(13) = {(13),(132)},H(23) = {(23),(123)},

(3)是。

(4)是。

(5)不能。因为(13)H·(23)H = (132)H∉S₃/H,封闭性不满足。

(6)并不是每一个子群的左陪集分解关于左陪集乘法都能作成群,左陪集和右陪集对应相等的子群才可以(即aH = Ha),否则不行。

定义:

设N≤G,若∀a∈G,有aN = Na,则称N是G的不变子群(正规子群),记为N⊿G。

注:三角形符号应该是顶角朝向左边的等腰三角形,找不到这个符号所以用个近似的代替了

N的一个左陪集(也是右陪集)称为N的一个陪集。

(待续......)

相关推荐
amazinging25 分钟前
北京-4年功能测试2年空窗-报培训班学测开-第四十三天
python·学习
V我五十买鸡腿1 小时前
顺序栈和链式栈
c语言·数据结构·笔记·算法
祁思妙想1 小时前
八股学习(五)---MySQL
学习
虾球xz1 小时前
CppCon 2018 学习:THE MOST VALUABLE VALUES
开发语言·c++·学习
麟城Lincoln2 小时前
【RHCSA-Linux考试题目笔记(自用)】servera的题目
linux·笔记·考试·rhcsa
丰锋ff2 小时前
计网学习笔记第2章 物理层(灰灰题库)
笔记·学习
Chef_Chen3 小时前
从0开始学习R语言--Day39--Spearman 秩相关
开发语言·学习·r语言
阿絮~4 小时前
Apache RocketMQ进阶之路阅读笔记和疑问
笔记·apache·rocketmq
天水幼麟9 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
天水幼麟11 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习