AcWing 1073 树的中心 树形dp (详解)

这道题目非常有新意,在过去,我们通常先访问子节点去更新父节点的状态,但是这道题我们还需要从父节点去更新子节点。

我们可以想象为向上和向下两个方向,我们任取一点,先向下走,再回来更新上面的点,这样我们就能得出向下的最长距离和次长距离,同时记录最长距离是走哪个点获得的。

然后我们再次深搜,对每个点用这个点去更新他所有子节点,因为他的子节点的最大向上值就是他的最大向上值或者向下最长距离或者次长距离加上这两点间的距离。

代码

cpp 复制代码
#include <bits/stdc++.h>

using namespace std;

const int N = 100010, INF = 0x3f3f3f3f;

int n, res = INF;

int h[N], e[N], ne[N], w[N], idx;

int d1[N], d2[N], s[N], up[N];

void add(int a, int b, int c)
{
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}

void dfs1(int u, int f)
{
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        
        if (j == f) continue;
        
        dfs1(j, u);
        
        if (d1[j] + w[i] >= d1[u])
        {
            s[u] = j;
            d2[u] = d1[u];
            d1[u] = d1[j] + w[i];
        }
        else if (d1[j] + w[i] >= d2[u])
        {
            d2[u] = d1[j] + w[i];
        }
    }
}

void dfs2(int u, int f)
{
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (j == f) continue;
        
        if (s[u] == j) up[j] = w[i] + max(up[u], d2[u]);
        else up[j] = w[i] + max(up[u], d1[u]);
        dfs2(j, u);
    }
}

int main()
{
    cin >> n;
    
    memset(h, -1, sizeof h);
    
    for (int i = 1; i < n; i ++ )
    {
        int a, b, c;
        cin >> a >> b >> c;
        
        add(a, b, c), add(b, a, c);
    }
    
    dfs1(1, -1);
    dfs2(1, -1);
    
    for (int i = 1; i <= n; i ++ ) res = min(res, max(up[i], d1[i]));
    
    cout << res << endl;
    
    return 0;
}
相关推荐
xuanjiong2 小时前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
好好学习^按时吃饭3 小时前
[NOIP 1999 提高组] 导弹拦截
动态规划
绵绵细雨中的乡音20 小时前
动态规划-第六篇
算法·动态规划
程序员黄同学21 小时前
动态规划,如何应用动态规划解决实际问题?
算法·动态规划
脑子慢且灵1 天前
蓝桥杯冲刺:一维前缀和
算法·leetcode·职场和发展·蓝桥杯·动态规划·一维前缀和
小王努力学编程1 天前
动态规划学习——回文子串系列问题【C++】
c++·学习·算法·leetcode·动态规划
Espresso Macchiato1 天前
Leetcode 3500. Minimum Cost to Divide Array Into Subarrays
leetcode·动态规划·leetcode hard·leetcode 3500·leetcode双周赛153
工一木子1 天前
大厂算法面试 7 天冲刺:第5天- 递归与动态规划深度解析 - 高频面试算法 & Java 实战
算法·面试·动态规划
pen-ai2 天前
【NLP】15. NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代
人工智能·自然语言处理·动态规划
烁3472 天前
每日一题(小白)动态规划篇2
算法·动态规划