AcWing 1073 树的中心 树形dp (详解)

这道题目非常有新意,在过去,我们通常先访问子节点去更新父节点的状态,但是这道题我们还需要从父节点去更新子节点。

我们可以想象为向上和向下两个方向,我们任取一点,先向下走,再回来更新上面的点,这样我们就能得出向下的最长距离和次长距离,同时记录最长距离是走哪个点获得的。

然后我们再次深搜,对每个点用这个点去更新他所有子节点,因为他的子节点的最大向上值就是他的最大向上值或者向下最长距离或者次长距离加上这两点间的距离。

代码

cpp 复制代码
#include <bits/stdc++.h>

using namespace std;

const int N = 100010, INF = 0x3f3f3f3f;

int n, res = INF;

int h[N], e[N], ne[N], w[N], idx;

int d1[N], d2[N], s[N], up[N];

void add(int a, int b, int c)
{
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}

void dfs1(int u, int f)
{
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        
        if (j == f) continue;
        
        dfs1(j, u);
        
        if (d1[j] + w[i] >= d1[u])
        {
            s[u] = j;
            d2[u] = d1[u];
            d1[u] = d1[j] + w[i];
        }
        else if (d1[j] + w[i] >= d2[u])
        {
            d2[u] = d1[j] + w[i];
        }
    }
}

void dfs2(int u, int f)
{
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (j == f) continue;
        
        if (s[u] == j) up[j] = w[i] + max(up[u], d2[u]);
        else up[j] = w[i] + max(up[u], d1[u]);
        dfs2(j, u);
    }
}

int main()
{
    cin >> n;
    
    memset(h, -1, sizeof h);
    
    for (int i = 1; i < n; i ++ )
    {
        int a, b, c;
        cin >> a >> b >> c;
        
        add(a, b, c), add(b, a, c);
    }
    
    dfs1(1, -1);
    dfs2(1, -1);
    
    for (int i = 1; i <= n; i ++ ) res = min(res, max(up[i], d1[i]));
    
    cout << res << endl;
    
    return 0;
}
相关推荐
ZZZS05161 小时前
stack栈练习
c++·笔记·学习·算法·动态规划
vortex53 小时前
算法设计与分析:分治、动态规划与贪心算法的异同与选择
算法·贪心算法·动态规划
✿ ༺ ོIT技术༻1 天前
剑指offer第2版:动态规划+记忆化搜索
算法·动态规划·记忆化搜索
ゞ 正在缓冲99%…3 天前
leetcode918.环形子数组的最大和
数据结构·算法·leetcode·动态规划
c++bug3 天前
动态规划VS记忆化搜索(2)
算法·动态规划
蓝澈11214 天前
弗洛伊德(Floyd)算法-各个顶点之间的最短路径问题
java·数据结构·动态规划
xindafu5 天前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu5 天前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划
Deepoch6 天前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
亮亮爱刷题15 天前
飞往大厂梦之算法提升-7
数据结构·算法·leetcode·动态规划