Bert框架详解(下)

一、Bert模型网络结构

1、Add与Normalize

Add:将前面的数据传到后面层,残差网络同理。

Normalize :归一化,与batch normalize同理。

2、outputs(shifted right)

outputs(shifted right):指在解码器处理过程中,将之前的输出序列向右移动一位,并在最左侧添加一个新的起始符(如"<sos>"或目标序列开始的特殊token)作为新的输入。这样做的目的是让解码器在生成下一个词时,能够考虑到已经生成的词序列。 作用:通过"shifted right"操作,解码器能够在生成每个词时,都基于之前已经生成的词序列进行推断。这样,解码器就能够逐步构建出完整的输出序列。 示例说明:假设翻译任务,输入是"我爱中国",目标输出是"I love China"。在解码器的处理过程中: 在第一个步,解码器接收一个起始符(如"<sos>")作为输入,并预测输出序列的第一个词"I"。 在第二个步,解码器将之前的输出"I"和起始符一起作为新的输入(即"<sos> I"),并预测下一个词"love"。 以此类推,直到解码器生成完整的输出序列"I love China"。

3、训练数据

方法一:随机的将句子中的15%的词汇进行mask。让模型去预测mask的词汇。 注:一般选择字进行mask,词的可能性太多,例如今天,明天,后天,上午,下午,没有,再次等等。

方法二:预测两个句子是否应该连在一起。

CLS:分类标记(Classification Token)用于表示输入序列的开始。在输入序列中,CLS应放置在句子的开头。在训练过程中,CLS也当作一个词参与训练,得到对应与其他词汇关系的词向量。 SEP:分隔符标记(Separator Token)用于分隔两个句子或表示单个句子的结束。在处理多个句子时SEP应放置在每个句子的结尾。在训练过程中,SEP也当作一个词参与训练,得到对应与其他词汇关系的词向量。

相关推荐
It's now3 小时前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R3 小时前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
西南胶带の池上桜3 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI3 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志4 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊4 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great4 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体
Nautiluss4 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
yzx9910134 小时前
人工智能大模型新浪潮:五大突破性工具深度解析
人工智能