Bert框架详解(下)

一、Bert模型网络结构

1、Add与Normalize

Add:将前面的数据传到后面层,残差网络同理。

Normalize :归一化,与batch normalize同理。

2、outputs(shifted right)

outputs(shifted right):指在解码器处理过程中,将之前的输出序列向右移动一位,并在最左侧添加一个新的起始符(如"<sos>"或目标序列开始的特殊token)作为新的输入。这样做的目的是让解码器在生成下一个词时,能够考虑到已经生成的词序列。 作用:通过"shifted right"操作,解码器能够在生成每个词时,都基于之前已经生成的词序列进行推断。这样,解码器就能够逐步构建出完整的输出序列。 示例说明:假设翻译任务,输入是"我爱中国",目标输出是"I love China"。在解码器的处理过程中: 在第一个步,解码器接收一个起始符(如"<sos>")作为输入,并预测输出序列的第一个词"I"。 在第二个步,解码器将之前的输出"I"和起始符一起作为新的输入(即"<sos> I"),并预测下一个词"love"。 以此类推,直到解码器生成完整的输出序列"I love China"。

3、训练数据

方法一:随机的将句子中的15%的词汇进行mask。让模型去预测mask的词汇。 注:一般选择字进行mask,词的可能性太多,例如今天,明天,后天,上午,下午,没有,再次等等。

方法二:预测两个句子是否应该连在一起。

CLS:分类标记(Classification Token)用于表示输入序列的开始。在输入序列中,CLS应放置在句子的开头。在训练过程中,CLS也当作一个词参与训练,得到对应与其他词汇关系的词向量。 SEP:分隔符标记(Separator Token)用于分隔两个句子或表示单个句子的结束。在处理多个句子时SEP应放置在每个句子的结尾。在训练过程中,SEP也当作一个词参与训练,得到对应与其他词汇关系的词向量。

相关推荐
京东零售技术9 分钟前
京东零售张泽华:从营销意图到购买转化,AI重塑广告增长
人工智能
IT_陈寒2 小时前
Python开发者必须掌握的12个高效数据处理技巧,用过都说香!
前端·人工智能·后端
飞哥数智坊11 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI13 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元15 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元15 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心15 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术15 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing16 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_16 小时前
NCCL的用户缓冲区注册
人工智能