Bert框架详解(下)

一、Bert模型网络结构

1、Add与Normalize

Add:将前面的数据传到后面层,残差网络同理。

Normalize :归一化,与batch normalize同理。

2、outputs(shifted right)

outputs(shifted right):指在解码器处理过程中,将之前的输出序列向右移动一位,并在最左侧添加一个新的起始符(如"<sos>"或目标序列开始的特殊token)作为新的输入。这样做的目的是让解码器在生成下一个词时,能够考虑到已经生成的词序列。 作用:通过"shifted right"操作,解码器能够在生成每个词时,都基于之前已经生成的词序列进行推断。这样,解码器就能够逐步构建出完整的输出序列。 示例说明:假设翻译任务,输入是"我爱中国",目标输出是"I love China"。在解码器的处理过程中: 在第一个步,解码器接收一个起始符(如"<sos>")作为输入,并预测输出序列的第一个词"I"。 在第二个步,解码器将之前的输出"I"和起始符一起作为新的输入(即"<sos> I"),并预测下一个词"love"。 以此类推,直到解码器生成完整的输出序列"I love China"。

3、训练数据

方法一:随机的将句子中的15%的词汇进行mask。让模型去预测mask的词汇。 注:一般选择字进行mask,词的可能性太多,例如今天,明天,后天,上午,下午,没有,再次等等。

方法二:预测两个句子是否应该连在一起。

CLS:分类标记(Classification Token)用于表示输入序列的开始。在输入序列中,CLS应放置在句子的开头。在训练过程中,CLS也当作一个词参与训练,得到对应与其他词汇关系的词向量。 SEP:分隔符标记(Separator Token)用于分隔两个句子或表示单个句子的结束。在处理多个句子时SEP应放置在每个句子的结尾。在训练过程中,SEP也当作一个词参与训练,得到对应与其他词汇关系的词向量。

相关推荐
无心水2 分钟前
【Stable Diffusion 3.5 FP8】8、生产级保障:Stable Diffusion 3.5 FP8 伦理安全与问题排查
人工智能·python·安全·docker·stable diffusion·ai镜像开发·镜像实战开发
小程故事多_805 分钟前
开源封神!Minion Skills 重构 Claude Skills,解锁 AI Agent 无限能力
人工智能·重构·开源·aigc
minhuan8 分钟前
大模型应用:不减性能只减负担:大模型稀疏化技术全景与实践.36
大数据·人工智能·算法
qq_4308558819 分钟前
线代第三章向量第三节:向量组的秩
人工智能·机器学习
Saniffer_SH23 分钟前
【每日一题】笔记本电脑上从U盘拷贝文件到M.2 SSD过程中为什么链路还会偶尔进入L1.2低功耗?
服务器·网络·人工智能·驱动开发·单片机·嵌入式硬件·电脑
lusasky23 分钟前
AgentScope的主要开源竞品框架对比
人工智能·开源
高光视点23 分钟前
共话 AI Agent 规模化落地!快鹭科技受邀参与福田 “益企 LINK” 沙龙圆桌讨论
人工智能·科技
mys551823 分钟前
杨建允:AI搜索优化对全链路营销的影响
人工智能·aigc·geo·ai搜索优化·ai引擎优化
汤姆yu25 分钟前
基于深度学习的电动车头盔佩戴检测系统
人工智能·深度学习
木头左26 分钟前
强化学习结合LSTM的量化交易策略奖励函数与入参关联
人工智能·rnn·lstm