Bert框架详解(下)

一、Bert模型网络结构

1、Add与Normalize

Add:将前面的数据传到后面层,残差网络同理。

Normalize :归一化,与batch normalize同理。

2、outputs(shifted right)

outputs(shifted right):指在解码器处理过程中,将之前的输出序列向右移动一位,并在最左侧添加一个新的起始符(如"<sos>"或目标序列开始的特殊token)作为新的输入。这样做的目的是让解码器在生成下一个词时,能够考虑到已经生成的词序列。 作用:通过"shifted right"操作,解码器能够在生成每个词时,都基于之前已经生成的词序列进行推断。这样,解码器就能够逐步构建出完整的输出序列。 示例说明:假设翻译任务,输入是"我爱中国",目标输出是"I love China"。在解码器的处理过程中: 在第一个步,解码器接收一个起始符(如"<sos>")作为输入,并预测输出序列的第一个词"I"。 在第二个步,解码器将之前的输出"I"和起始符一起作为新的输入(即"<sos> I"),并预测下一个词"love"。 以此类推,直到解码器生成完整的输出序列"I love China"。

3、训练数据

方法一:随机的将句子中的15%的词汇进行mask。让模型去预测mask的词汇。 注:一般选择字进行mask,词的可能性太多,例如今天,明天,后天,上午,下午,没有,再次等等。

方法二:预测两个句子是否应该连在一起。

CLS:分类标记(Classification Token)用于表示输入序列的开始。在输入序列中,CLS应放置在句子的开头。在训练过程中,CLS也当作一个词参与训练,得到对应与其他词汇关系的词向量。 SEP:分隔符标记(Separator Token)用于分隔两个句子或表示单个句子的结束。在处理多个句子时SEP应放置在每个句子的结尾。在训练过程中,SEP也当作一个词参与训练,得到对应与其他词汇关系的词向量。

相关推荐
Piar1231sdafa6 分钟前
YOLO11-C3k2-RVB-EMA多色线缆颜色识别与分类系统详解
人工智能·分类·数据挖掘
大山同学12 分钟前
深度学习任务分类与示例(一)
人工智能·深度学习·分类
一条闲鱼_mytube16 分钟前
智能体设计模式(二)反思-工具使用-规划
网络·人工智能·设计模式
m0_7482546621 分钟前
CSS AI 编程
前端·css·人工智能
愚公搬代码25 分钟前
【愚公系列】《AI+直播营销》030-主播的选拔和人设设计(选拔匹配的主播)
人工智能
三不原则29 分钟前
故障案例:告警风暴处理,用 AI 实现告警聚合与降噪
人工智能
这张生成的图像能检测吗31 分钟前
(论文速读)GNS:学习用图网络模拟复杂物理
人工智能·图神经网络·物理模型
童话名剑35 分钟前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
HySpark38 分钟前
基于语音转文字与语义分析的智能语音识别技术
人工智能·语音识别
Coder_Boy_42 分钟前
基于SpringAI的在线考试系统-考试模块前端页面交互设计及优化
java·数据库·人工智能·spring boot