Bert框架详解(下)

一、Bert模型网络结构

1、Add与Normalize

Add:将前面的数据传到后面层,残差网络同理。

Normalize :归一化,与batch normalize同理。

2、outputs(shifted right)

outputs(shifted right):指在解码器处理过程中,将之前的输出序列向右移动一位,并在最左侧添加一个新的起始符(如"<sos>"或目标序列开始的特殊token)作为新的输入。这样做的目的是让解码器在生成下一个词时,能够考虑到已经生成的词序列。 作用:通过"shifted right"操作,解码器能够在生成每个词时,都基于之前已经生成的词序列进行推断。这样,解码器就能够逐步构建出完整的输出序列。 示例说明:假设翻译任务,输入是"我爱中国",目标输出是"I love China"。在解码器的处理过程中: 在第一个步,解码器接收一个起始符(如"<sos>")作为输入,并预测输出序列的第一个词"I"。 在第二个步,解码器将之前的输出"I"和起始符一起作为新的输入(即"<sos> I"),并预测下一个词"love"。 以此类推,直到解码器生成完整的输出序列"I love China"。

3、训练数据

方法一:随机的将句子中的15%的词汇进行mask。让模型去预测mask的词汇。 注:一般选择字进行mask,词的可能性太多,例如今天,明天,后天,上午,下午,没有,再次等等。

方法二:预测两个句子是否应该连在一起。

CLS:分类标记(Classification Token)用于表示输入序列的开始。在输入序列中,CLS应放置在句子的开头。在训练过程中,CLS也当作一个词参与训练,得到对应与其他词汇关系的词向量。 SEP:分隔符标记(Separator Token)用于分隔两个句子或表示单个句子的结束。在处理多个句子时SEP应放置在每个句子的结尾。在训练过程中,SEP也当作一个词参与训练,得到对应与其他词汇关系的词向量。

相关推荐
weixin_377634842 小时前
【强化学习】RLMT强制 CoT提升训练效果
人工智能·算法·机器学习
Francek Chen2 小时前
【深度学习计算机视觉】14:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
人工智能·pytorch·深度学习·计算机视觉·kaggle·imagenet dogs
dxnb222 小时前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数
渡我白衣2 小时前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
飞哥数智坊2 小时前
Claude Skills 实测体验:不用翻墙,GLM-4.6 也能玩转
人工智能·claude·chatglm (智谱)
FreeBuf_2 小时前
微软数字防御报告:AI成为新型威胁,自动化漏洞利用技术颠覆传统
人工智能·microsoft·自动化
MoRanzhi12033 小时前
Pillow 基础图像操作与数据预处理
图像处理·python·深度学习·机器学习·numpy·pillow·数据预处理
IT_陈寒3 小时前
Vue3性能优化实战:这7个技巧让我的应用加载速度提升50%!
前端·人工智能·后端
GIS数据转换器3 小时前
带高度多边形,生成3D建筑模型,支持多种颜色或纹理的OBJ、GLTF、3DTiles格式
数据库·人工智能·机器学习·3d·重构·无人机
茜茜西西CeCe3 小时前
数字图像处理-图像编码与压缩
人工智能·计算机视觉·matlab·数字图像处理·图像压缩·图像编码