【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。

操作环境:

MATLAB 2022a

1、算法描述

改进A*算法的优点分析

改进A*算法相对于传统A*算法在多个方面进行了优化,包括避免斜穿障碍物顶点、删除中间多余节点以及提高搜索效率。这些改进措施使得路径规划更加高效、安全和可靠,特别是在复杂环境中表现尤为突出。本文将详细讨论这些改进及其带来的优点。

  1. 避免斜穿障碍物顶点,避免碰撞

在路径规划过程中,斜穿障碍物顶点会带来很大的风险,可能导致机器人或自动驾驶车辆与障碍物发生碰撞。传统的A*算法在扩展邻接节点时,没有考虑这一点,可能会选择那些斜穿障碍物顶点的路径,从而增加碰撞的风险。改进A*算法通过对邻接节点的严格检查,避免了这种情况的发生。

具体来说,改进A*算法在扩展当前节点的邻接节点时,会检测这些节点是否与障碍物顶点相邻,如果是,则不将该节点加入开放列表。这样一来,生成的路径将不会斜穿任何障碍物顶点,从而避免了潜在的碰撞风险。这种约束确保了路径的安全性,提高了算法在实际应用中的可靠性。

这一改进在实际应用中具有重要意义。特别是在机器人导航、无人机飞行和自动驾驶等领域,路径的安全性至关重要。通过避免斜穿障碍物顶点,改进A*算法能够生成更安全、更可靠的路径,有效避免潜在的碰撞风险。这不仅保护了设备的安全,还保护了周围环境和人类的安全。

  1. 删除中间多余节点,减少转折

传统A*算法生成的路径往往包含许多不必要的中间节点,这些节点会增加路径的转折点,使路径变得曲折,从而增加行驶时间和能耗。改进A*算法通过优化路径,删除不必要的中间节点,从而减少转折点,使路径更加平滑。

在路径生成过程中,改进A*算法首先生成一条初始路径,然后对该路径进行进一步优化。具体来说,算法会检查路径中的每个节点,并删除那些不影响路径连通性的中间节点。这一优化过程显著减少了路径中的转折点,使路径更加平滑和直观。

这种改进不仅减少了机器人或车辆的行驶时间和能耗,还提高了路径的效率和可靠性。平滑的路径意味着机器人或车辆可以更高效地移动,减少了频繁转向的时间和能量消耗。同时,减少转折点也降低了路径规划的复杂性,使得算法在实际应用中更加易于实现。

  1. 提高搜索效率

改进A*算法在提高搜索效率方面也做了许多优化。传统A*算法在搜索过程中,会扩展大量的节点,特别是在复杂环境中,计算量非常大。改进A*算法通过多种方式提高了搜索效率,包括优化启发函数和调整节点扩展策略。

首先,改进A*算法使用了一种改进的启发函数,结合了路径成本和障碍率的因素,使得评价函数更加准确。这种启发函数不仅考虑了当前路径的成本,还考虑了从当前节点到目标节点之间的障碍物数量,从而更准确地评估每个节点的优先级。具体来说,评价函数采用了以下形式:

𝑓(𝑛)=𝑔(𝑛)+(1−log⁡(𝑃))⋅ℎ(𝑛)​ g(n)是当前节点到目标节点的估计成本,h(n) 是起始点与目标点之间的障碍率,表示障碍物的数量与栅格总数之比。通过引入障碍率,改进A*算法能够更有效地避开障碍物,提高了路径规划的效率。

其次,改进A*算法在扩展节点时,会优先扩展那些更有可能通向目标节点的节点。具体来说,算法会根据启发函数的值对邻接节点进行排序,优先扩展那些评价函数值较小的节点,从而减少了不必要的计算量。这些优化措施显著提高了算法的搜索效率,特别是在复杂环境中,能够更快地找到最优路径。

  1. 路径的三次优化

改进A*算法不仅在初始路径生成时进行了优化,还通过多次优化进一步提高了路径的质量。具体来说,改进A*算法在生成初始路径后,会对路径进行三次优化,分别删除不必要的中间节点、调整路径使其更加平滑以及进一步删除转折点。

第一次优化通过Line_OPEN_ST函数对路径进行处理,删除不必要的中间节点。第二次优化通过Line_OPEN_STtwo函数进一步平滑路径,减少转折点。第三次优化再次通过Line_OPEN_STtwo函数对路径进行调整,确保路径尽可能直。

这种多次优化的策略使得最终生成的路径不仅安全可靠,而且平滑高效。这在实际应用中具有重要意义,特别是在复杂环境中,优化后的路径能够更好地适应环境的变化,提高路径规划的鲁棒性和适应性。

  1. 实际应用中的效果

通过对比传统A*算法和改进A*算法在实际应用中的效果,可以看出改进A*算法在多个方面表现出了显著的优势。在路径的安全性方面,改进A*算法通过避免斜穿障碍物顶点,有效减少了潜在的碰撞风险,保证了路径的安全可靠。在路径的平滑性方面,改进A*算法通过删除中间多余节点和减少转折,使路径更加直观和平滑,提高了路径的效率和可靠性。在搜索效率方面,改进A*算法通过优化启发函数和调整节点扩展策略,显著减少了计算量,提高了路径规划的速度。

例如,在机器人导航中,改进A*算法能够生成更加安全和平滑的路径,使机器人能够更高效地到达目标位置。在自动驾驶中,改进A*算法能够生成更加可靠和高效的行驶路径,减少车辆的行驶时间和能耗。在无人机飞行中,改进A*算法能够生成更加安全和高效的飞行路径,避免碰撞风险,提高飞行效率。

  1. 进一步改进的潜力

尽管改进A*算法在多个方面表现出优越的性能,但仍有进一步改进的潜力。首先,在处理动态环境时,改进A*算法可以结合实时环境感知技术,动态调整路径,提高路径规划的实时性和适应性。其次,在处理多目标路径规划时,改进A*算法可以结合多目标优化算法,同时考虑多个目标,提高路径规划的综合性能。此外,改进A*算法还可以结合机器学习技术,通过学习环境特征和路径规划经验,进一步提高路径规划的效率和可靠性。

总结

改进A*算法通过避免斜穿障碍物顶点、删除中间多余节点和提高搜索效率,在路径规划中展现出优越的性能。具体来说,这些改进使得路径更加安全、平滑和高效,特别适用于机器人导航、无人机飞行和自动驾驶等领域。

避免斜穿障碍物顶点:通过严格检查邻接节点,避免路径斜穿障碍物顶点,提高了路径的安全性和可靠性。

删除中间多余节点,减少转折:通过路径优化,删除不必要的中间节点,使路径更加平滑,减少了行驶时间和能耗。

提高搜索效率:通过优化启发函数和节点扩展策略,减少了不必要的计算量,显著提高了算法的搜索效率。

路径的三次优化:通过三次优化策略,进一步提高了路径的质量,使路径更加平滑和高效。

实际应用中的效果:在机器人导航、自动驾驶和无人机飞行等实际应用中,改进A*算法展现出了显著的优势。

进一步改进的潜力:结合实时环境感知、多目标优化和机器学习技术,改进A*算法具有进一步提升的潜力。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。_a*算法优化避免斜穿障碍物顶点-CSDN博客https://blog.csdn.net/Koukesuki/article/details/138901379?ops_request_misc=%257B%2522request%255Fid%2522%253A%252223B03E2E-5BBF-4B3A-8AA4-0F1A832D8442%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=23B03E2E-5BBF-4B3A-8AA4-0F1A832D8442&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-138901379-null-null.nonecase&utm_term=208&spm=1018.2226.3001.4450

相关推荐
Swift社区36 分钟前
在 Swift 中实现字符串分割问题:以字典中的单词构造句子
开发语言·ios·swift
没头脑的ht38 分钟前
Swift内存访问冲突
开发语言·ios·swift
没头脑的ht41 分钟前
Swift闭包的本质
开发语言·ios·swift
wjs202443 分钟前
Swift 数组
开发语言
嵌新程1 小时前
day06(单片机高级)PCB设计
单片机·嵌入式硬件·pcb
stm 学习ing2 小时前
FPGA 第十讲 避免latch的产生
c语言·开发语言·单片机·嵌入式硬件·fpga开发·fpga
LNTON羚通2 小时前
摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现
算法·目标检测·音视频·监控·视频监控
湫ccc3 小时前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe3 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql