全连接神经网络案例——手写数字识别

文章目录

使⽤⼿写数字的MNIST数据集如上图所示,该数据集包含60,000个⽤于训练的样本和10,000个⽤于测试的样本,图像是固定⼤⼩(28x28像素),其值为0到255。

整个案例的实现流程是:

  • 数据加载
  • 数据处理
  • 模型构建
  • 模型训练
  • 模型测试
  • 模型保存

1.我们导入需要的工具包

python 复制代码
# 1.导入所需的工具包
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
# 构建模型
from tensorflow.keras.models import Sequential
# 相关的网络层
from tensorflow.keras.layers import Dense, Dropout, Activation, BatchNormalization
# 导入辅助工具包
from tensorflow.keras import utils
# 正则化
from tensorflow.keras import regularizers
# 数据集
from tensorflow.keras.datasets import mnist

2.数据加载

首先我们加载手写数字图像

python 复制代码
# 2.数据加载
# 加载数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print(x_train.shape, y_train.shape, x_test.shape, y_test.shape)

数据展示:

3.数据处理

神经⽹络中的每个训练样本是⼀个向量,因此需要对输⼊进⾏重塑,使每个28x28的图像成为⼀个的784维向量。另外,将输⼊数据进⾏归⼀化处理,从0-255调整到0-1。

另外对于⽬标值我们也需要进⾏处理,将其转换为热编码的形式(本):

python 复制代码
# 3.数据处理
# 数据维度的调整
x_train = x_train.reshape(60000, 784)
x_test = x_test(10000, 784)
# 数据类型调整
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# 归一化
x_train = x_train/255
x_test = x_test/255
# 将目标值转换成热编码的形式
y_train = utils.to_categorical(y_train, 10)
y_test = utils.to_categorical(y_test, 10)

4.模型构建

在这⾥我们构建只有3层全连接的⽹络来进⾏处理:

构建模型如下所示:

python 复制代码
# 4.模型构建
# 使用序列模型进行构建
model = Sequential()
# 全连接层,2个隐藏层,一个输出层
# 第一个隐藏层,512个神经元,先BN再激活,随机失活
model.add(Dense(512, input_shape=(784,)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
# 第二个隐藏层,512个神经元,先BN再激活,随机失活
model.add(Dense(512, kernel_regularizer=regularizers.l2(0.01)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
# 输出层
model.add(Dense(10, activation='softmax'))
# 查看模型架构
model.summary()

5.模型编译

设置模型训练使⽤的损失函数交叉熵损失和优化⽅法adam,损失函数⽤来衡量预测值与真实值之间的差异,优化器⽤来使⽤损失函数达到最优:

python 复制代码
# 5.模型编译
# 损失函数(交叉熵损失),优化器,评价指标
model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer=tf.keras.optimizers.Adam(),
              metrics=tf.keras.metrics.Accuracy())

6.模型训练

python 复制代码
# 6.模型训练
# 使用fit,指定训练集,epochs,batch_size,val,verbose
history = model.fit(x_train, y_train, epochs=4, batch_size=128, validation_data=(x_test, y_test), verbose=1)

我们将损失绘制成曲线:

python 复制代码
# 绘制损失函数
plt.figure()
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='val')
plt.legend()
plt.grid()
plt.show()

我们再来绘制一下准确率变化曲线:

python 复制代码
# 绘制准确率变化曲线
plt.figure()
plt.plot(history.history['accuracy'], label='train')
plt.plot(history.history['val_accuracy'], label='val')
plt.legend()
plt.grid()
plt.show()

其中,history会保存loss的变化和在compile中指定的评价指标的结果。

7.模型测试

python 复制代码
# 7.模型测试
model.evaluate(x_test, y_test, verbose=1)

8.模型保存

python 复制代码
# 8.模型保存
model.save("my_model.h5")

之后要是想要想在这个模型时,只需要使用model = tf.keras.models.load_model('my_model.h5')即可。

相关推荐
小鸡吃米…6 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫43 分钟前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd1 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~2 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1