【大数据学习 | kafka高级部分】kafka的优化参数整理

1. 优化参数

参数 解释
buffer.memory RecordAccumulator 缓冲区总大小,默认 32m
batch.size 默认 16k,sender线程拉取数据大小
linger.ms sender线程拉取数据等待时长
acks 确认应答 0 1 -1
max.in.flight.requests.per.connection 没有ack返回时候可以发送几次数据
retries producer失败重试次数
enable.idempotence 启幂等性,默认 true
compression.type 生产者发送的所有数据的压缩方式
auto.leader.rebalance.enable leader是否自动切换
leader.imbalance.per.broker.percentage leader均衡比10%
leader.imbalance.check.interval.seconds leader均衡检测时间五分钟
log.segment.bytes segment大小
log.index.interval.bytes 每4k生成一个索引数据,写入一次文件
log.cleanup.policy 日志删除方式
log.retention.hours 数据保存时长
enable.auto.commit 自动提交
auto.commit.interval.ms 提交间隔
auto.offset.reset 初始化消费位置
offsets.topic.num.partitions __consumer_offsets分区数量
session.timeout.ms 消费者断开超时时间
max.poll.records 消费者拉取条数
fetch.max.bytes 消费者拉取大小
partition.assignment.strategy 消费者分区分配策略

2. 数据吞吐量和数据重复问题

数据在消费的时候可能会遇见数据堆积,无法及时消费计算的问题

这个时候可以适当的调节broker的数量和partition的数量,让多个机器帮助进行处理可提高吞吐量,并且分区越多消费者就可以适当增多,让消费速度得到很大的提升

适当增加每次拉取的大小也会增加消费速度。

java 复制代码
max.poll.records  消费者拉取条数 
fetch.max.bytes  消费者拉取大小

kafka数据稳定性保证。

首先从producer出发

ack = 0 or ack = 1 会出现数据丢失问题

ack = -1 会出现数据重复问题

开始幂等性可以进行单分区去重

保证一批次数据稳定性可以开启事物

消费者部分如果是自动提交偏移量会出现重复消费问题,手动保存偏移量就不会出现这个问题

相关推荐
专业开发者16 分钟前
奇迹由此而生:回望 Wi-Fi® 带来的诸多意外影响
大数据
曹牧25 分钟前
Oracle:拼音码
数据库·oracle
BD_Marathon26 分钟前
【JavaWeb】日程管理03——准备数据库和实体类
数据库·oracle
尔嵘33 分钟前
git操作
大数据·git·elasticsearch
古德new39 分钟前
openFuyao AI大数据场景加速技术实践指南
大数据·人工智能
金融小师妹1 小时前
非农数据LSTM时序建模强化未来降息预期,GVX-GARCH驱动金价4300点位多空博弈
大数据·人工智能·深度学习
yumgpkpm1 小时前
Iceberg在Cloudera CDP集群详细操作步骤
大数据·人工智能·hive·zookeeper·spark·开源·cloudera
他是龙5511 小时前
43:SQL注入进阶(请求类型、方法与格式实战)
数据库·sql
鹧鸪云光伏2 小时前
如何选择光储一体化方案设计软件
大数据·人工智能·光伏·光储
与衫2 小时前
SQLFlow × 高斯数据库:构建可治理、可追溯的数据底座
数据库·oracle