【大数据学习 | kafka高级部分】kafka的优化参数整理

1. 优化参数

参数 解释
buffer.memory RecordAccumulator 缓冲区总大小,默认 32m
batch.size 默认 16k,sender线程拉取数据大小
linger.ms sender线程拉取数据等待时长
acks 确认应答 0 1 -1
max.in.flight.requests.per.connection 没有ack返回时候可以发送几次数据
retries producer失败重试次数
enable.idempotence 启幂等性,默认 true
compression.type 生产者发送的所有数据的压缩方式
auto.leader.rebalance.enable leader是否自动切换
leader.imbalance.per.broker.percentage leader均衡比10%
leader.imbalance.check.interval.seconds leader均衡检测时间五分钟
log.segment.bytes segment大小
log.index.interval.bytes 每4k生成一个索引数据,写入一次文件
log.cleanup.policy 日志删除方式
log.retention.hours 数据保存时长
enable.auto.commit 自动提交
auto.commit.interval.ms 提交间隔
auto.offset.reset 初始化消费位置
offsets.topic.num.partitions __consumer_offsets分区数量
session.timeout.ms 消费者断开超时时间
max.poll.records 消费者拉取条数
fetch.max.bytes 消费者拉取大小
partition.assignment.strategy 消费者分区分配策略

2. 数据吞吐量和数据重复问题

数据在消费的时候可能会遇见数据堆积,无法及时消费计算的问题

这个时候可以适当的调节broker的数量和partition的数量,让多个机器帮助进行处理可提高吞吐量,并且分区越多消费者就可以适当增多,让消费速度得到很大的提升

适当增加每次拉取的大小也会增加消费速度。

java 复制代码
max.poll.records  消费者拉取条数 
fetch.max.bytes  消费者拉取大小

kafka数据稳定性保证。

首先从producer出发

ack = 0 or ack = 1 会出现数据丢失问题

ack = -1 会出现数据重复问题

开始幂等性可以进行单分区去重

保证一批次数据稳定性可以开启事物

消费者部分如果是自动提交偏移量会出现重复消费问题,手动保存偏移量就不会出现这个问题

相关推荐
白帽子黑客杰哥几秒前
除了SQL注入,WAF绕过技术如何应用于XSS、文件上传等其他漏洞类型?
网络·sql·xss·漏洞挖掘
jnrjian5 分钟前
Oracle 列A=列A 相当于列不为空,条件无意义
数据库·sql
叫我:松哥7 分钟前
基于Spark智能推荐算法的农业作物推荐系统,推荐算法使用Spark ML风格推荐引擎
大数据·python·机器学习·spark-ml·spark·flask·推荐算法
ws20190715 分钟前
湾区引擎轰鸣:AUTO TECH China 2026广州汽车零部件展何以撬动全球汽车供应链?
大数据·人工智能·科技·汽车
dishugj17 分钟前
oracle 监听常见报错解决
数据库·oracle
电商API_1800790524718 分钟前
获取淘宝商品视频API教程:从授权到落地实战
大数据·数据库·人工智能·数据分析·音视频
wyz19119 分钟前
第19章 数据治理的发展趋势
大数据·人工智能·数据治理·数据要素·数据资源
熹乐互动36 分钟前
电子签约软件实践分享:亲测哪家定制效果好
大数据·人工智能·python
希艾席帝恩44 分钟前
数字孪生赋能水利行业转型升级的关键路径
大数据·人工智能·数字孪生·数据可视化·数字化转型
J_liaty44 分钟前
MySQL EXPLAIN 深度解析与 SQL 优化实战
数据库·sql·mysql