【大数据学习 | kafka高级部分】kafka的优化参数整理

1. 优化参数

参数 解释
buffer.memory RecordAccumulator 缓冲区总大小,默认 32m
batch.size 默认 16k,sender线程拉取数据大小
linger.ms sender线程拉取数据等待时长
acks 确认应答 0 1 -1
max.in.flight.requests.per.connection 没有ack返回时候可以发送几次数据
retries producer失败重试次数
enable.idempotence 启幂等性,默认 true
compression.type 生产者发送的所有数据的压缩方式
auto.leader.rebalance.enable leader是否自动切换
leader.imbalance.per.broker.percentage leader均衡比10%
leader.imbalance.check.interval.seconds leader均衡检测时间五分钟
log.segment.bytes segment大小
log.index.interval.bytes 每4k生成一个索引数据,写入一次文件
log.cleanup.policy 日志删除方式
log.retention.hours 数据保存时长
enable.auto.commit 自动提交
auto.commit.interval.ms 提交间隔
auto.offset.reset 初始化消费位置
offsets.topic.num.partitions __consumer_offsets分区数量
session.timeout.ms 消费者断开超时时间
max.poll.records 消费者拉取条数
fetch.max.bytes 消费者拉取大小
partition.assignment.strategy 消费者分区分配策略

2. 数据吞吐量和数据重复问题

数据在消费的时候可能会遇见数据堆积,无法及时消费计算的问题

这个时候可以适当的调节broker的数量和partition的数量,让多个机器帮助进行处理可提高吞吐量,并且分区越多消费者就可以适当增多,让消费速度得到很大的提升

适当增加每次拉取的大小也会增加消费速度。

java 复制代码
max.poll.records  消费者拉取条数 
fetch.max.bytes  消费者拉取大小

kafka数据稳定性保证。

首先从producer出发

ack = 0 or ack = 1 会出现数据丢失问题

ack = -1 会出现数据重复问题

开始幂等性可以进行单分区去重

保证一批次数据稳定性可以开启事物

消费者部分如果是自动提交偏移量会出现重复消费问题,手动保存偏移量就不会出现这个问题

相关推荐
DeepVis Research1 天前
【AGI/Simulation】2026年度通用人工智能图灵测试与高频博弈仿真基准索引 (Benchmark Index)
大数据·人工智能·算法·数据集·量化交易
Nemo_ZR1 天前
Doris源码编译与开发环境搭建
大数据
java_t_t1 天前
Java属性解析映射到Json
java·json
阿里云大数据AI技术1 天前
一站式构建 AI 数据处理 Pipeline:DataWorks Notebook + MaxCompute MaxFrame 快速入门指南
大数据·人工智能
阿里云大数据AI技术1 天前
StarRocks + Paimon: 构建 Lakehouse Native 数据引擎
大数据·人工智能
实泽有之,无泽虚之1 天前
MySQL主机因多次连接数据库错误而被阻塞
数据库·sql·mysql
Knight_AL1 天前
从自然语言到 SQL:为什么向量数据库是更好的选择
数据库·sql
下海fallsea1 天前
韩国零食正在占领俄罗斯
大数据·人工智能
武汉唯众智创1 天前
全国职业院校技能大赛大数据应用开发实训室建设方案
大数据·国赛·大数据应用开发·大数据实训室·全国职业院校技能大赛·大数据应用开发实训室·大数据应用开发实验室
媒体人8881 天前
E-E-A-T²增强框架:AI时代GEO生成式引擎优化的信任破局之道
大数据·人工智能·搜索引擎·生成式引擎优化·geo优化