【大数据学习 | kafka高级部分】kafka的优化参数整理

1. 优化参数

参数 解释
buffer.memory RecordAccumulator 缓冲区总大小,默认 32m
batch.size 默认 16k,sender线程拉取数据大小
linger.ms sender线程拉取数据等待时长
acks 确认应答 0 1 -1
max.in.flight.requests.per.connection 没有ack返回时候可以发送几次数据
retries producer失败重试次数
enable.idempotence 启幂等性,默认 true
compression.type 生产者发送的所有数据的压缩方式
auto.leader.rebalance.enable leader是否自动切换
leader.imbalance.per.broker.percentage leader均衡比10%
leader.imbalance.check.interval.seconds leader均衡检测时间五分钟
log.segment.bytes segment大小
log.index.interval.bytes 每4k生成一个索引数据,写入一次文件
log.cleanup.policy 日志删除方式
log.retention.hours 数据保存时长
enable.auto.commit 自动提交
auto.commit.interval.ms 提交间隔
auto.offset.reset 初始化消费位置
offsets.topic.num.partitions __consumer_offsets分区数量
session.timeout.ms 消费者断开超时时间
max.poll.records 消费者拉取条数
fetch.max.bytes 消费者拉取大小
partition.assignment.strategy 消费者分区分配策略

2. 数据吞吐量和数据重复问题

数据在消费的时候可能会遇见数据堆积,无法及时消费计算的问题

这个时候可以适当的调节broker的数量和partition的数量,让多个机器帮助进行处理可提高吞吐量,并且分区越多消费者就可以适当增多,让消费速度得到很大的提升

适当增加每次拉取的大小也会增加消费速度。

java 复制代码
max.poll.records  消费者拉取条数 
fetch.max.bytes  消费者拉取大小

kafka数据稳定性保证。

首先从producer出发

ack = 0 or ack = 1 会出现数据丢失问题

ack = -1 会出现数据重复问题

开始幂等性可以进行单分区去重

保证一批次数据稳定性可以开启事物

消费者部分如果是自动提交偏移量会出现重复消费问题,手动保存偏移量就不会出现这个问题

相关推荐
忆~遂愿16 分钟前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
麦聪聊数据18 分钟前
Web 原生架构如何重塑企业级数据库协作流?
数据库·sql·低代码·架构
米羊12131 分钟前
已有安全措施确认(上)
大数据·网络
人道领域2 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
Goat恶霸詹姆斯2 小时前
mysql常用语句
数据库·mysql·oracle
qq_12498707532 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Hello.Reader2 小时前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
ask_baidu2 小时前
KafkaUtils
kafka·bigdata
xiaowu0802 小时前
C# 拆解 “显式接口实现 + 子类强类型扩展” 的设计思想
数据库·oracle
零售ERP菜鸟3 小时前
范式革命:从“信息化”到“数字化”的本质跃迁
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯