1. pytorch 中冻结模型参数后参数仍会被调整

问题
python 复制代码
        self.sgf_net.requires_grad_(False)

起初设置 requires_grad(False) 优化器也没有添加sgfnet的模型参数。但是在pylightning框架中,每次推理完模型的参数都会被改变,经过仔细排查发现问题

python 复制代码
        # self.sgf_net.requires_grad_(False)
        for param in self.sgf_net.parameters():
            param.requires_grad = False
        self.sgf_net.eval()
```
添加 model.eval() 设置为推理模型就可以了
相关推荐
学术小白人1 小时前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经1 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_20194 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba4 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学4 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子4 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望4 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端4 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白4 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗
阿正的梦工坊4 小时前
Kronecker积详解
人工智能·深度学习·机器学习