Spark的容错机制

1,Spark如何保障数据的安全

1、RDD容错机制:persist持久化机制

1)cache算子

  • 功能:将RDD缓存在内存中

  • 语法:cache()

  • 本质:底层调用的还是persist(StorageLevel.MEMORY_ONLY),但是只缓存在内存,如果内存不够,缓存会失败

  • 场景:资源充足,需要将RDD仅缓存在内存中

2)persist算子

  • 功能:将**RDD**【包含这个RDD的依赖关系】进行缓存,可以**自己指定缓存的级别**【和cache区别】

  • 语法:`persist(StorageLevel)`

  • 级别:StorageLevel决定了缓存位置和缓存几份

StorageLevel 有哪些级别:

Spark的StorageLevel共有9个缓存级别:

DISK_ONLY:缓存入硬盘。这个级别主要是讲那些庞大的Rdd,之后仍需使用但暂时不用的,放进磁盘,腾出Executor内存。

DISK_ONLY_2:多一个缓存副本。

MEMORY_ONLY:只使用内存进行缓存。这个级别最为常用,对于马上用到的高频rdd,推荐使用。

MEMORY_ONLY_2:多一个缓存副本。

MEMORY_AND_DISK:先使用内存,多出来的溢出到磁盘,对于高频的大rdd可以使用。

MEMORY_AND_DISK_2:多一个缓存副本。

OFF_HEAP:除了内存、磁盘,还可以存储在OFF_HEAP

场景:根据资源情况,将RDD缓存在不同的地方或者缓存多份

3)unpersist 算子 --释放缓存

  • 功能:将缓存的RDD进行释放

  • 语法:`unpersist`

  • unpersist(blocking=True):等释放完再继续下一步

  • 场景:明确RDD已经不再使用,后续还有很多的代码需要执行,将RDD的数据从缓存中释放,避免占用资源

  • 注意:如果不释放,这个Spark程序结束,也会释放这个程序中的所有内存

2、RDD容错机制:checkpoint检查点机制

问题:为了避免重复构建RDD,可以将RDD进行persist缓存,但是如果缓存丢失,还是会重新构建RDD,怎么解决?

checkpoint:检查点

  • 功能:将RDD的数据【不包含RDD依赖关系】存储在可靠的存储系统中:HDFS上

这个检查点有点类似于:虚拟机中的快照,像里程碑。

设置一个检查点目录

sc.setCheckpointDir("../datas/chk/chk1")

将RDD的数据持久化存储在HDFS

rs_rdd.checkpoint()

一定要在触发算子之前,调用checkpoint() 否则,检查点中没有数据

面试:RDD的cache、persist持久化机制和checkpoint检查点机制有什么区别?

相关推荐
pearbing32 分钟前
天猫UV量提高实用指南:找准方向,稳步突破流量瓶颈
大数据·uv·天猫uv量提高·天猫uv量·uv量提高·天猫提高uv量
程序员泠零澪回家种桔子2 小时前
分布式事务核心解析与实战方案
分布式
Dxy12393102162 小时前
Elasticsearch 索引与映射:为你的数据打造一个“智能仓库”
大数据·elasticsearch·搜索引擎
凯子坚持 c2 小时前
CANN 生态中的分布式训练利器:深入 `collective-ops` 项目实现高效多卡协同
分布式
岁岁种桃花儿2 小时前
Kafka从入门到上天系列第一篇:kafka的安装和启动
大数据·中间件·kafka
Apache Flink3 小时前
Apache Flink Agents 0.2.0 发布公告
大数据·flink·apache
永霖光电_UVLED3 小时前
打造更优异的 UVB 激光器
大数据·制造·量子计算
m0_466525293 小时前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
晟诺数字人3 小时前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
惊讶的猫3 小时前
rabbitmq实践小案例
分布式·rabbitmq