Spark的容错机制

1,Spark如何保障数据的安全

1、RDD容错机制:persist持久化机制

1)cache算子

  • 功能:将RDD缓存在内存中

  • 语法:cache()

  • 本质:底层调用的还是persist(StorageLevel.MEMORY_ONLY),但是只缓存在内存,如果内存不够,缓存会失败

  • 场景:资源充足,需要将RDD仅缓存在内存中

2)persist算子

  • 功能:将**RDD**【包含这个RDD的依赖关系】进行缓存,可以**自己指定缓存的级别**【和cache区别】

  • 语法:`persist(StorageLevel)`

  • 级别:StorageLevel决定了缓存位置和缓存几份

StorageLevel 有哪些级别:

Spark的StorageLevel共有9个缓存级别:

DISK_ONLY:缓存入硬盘。这个级别主要是讲那些庞大的Rdd,之后仍需使用但暂时不用的,放进磁盘,腾出Executor内存。

DISK_ONLY_2:多一个缓存副本。

MEMORY_ONLY:只使用内存进行缓存。这个级别最为常用,对于马上用到的高频rdd,推荐使用。

MEMORY_ONLY_2:多一个缓存副本。

MEMORY_AND_DISK:先使用内存,多出来的溢出到磁盘,对于高频的大rdd可以使用。

MEMORY_AND_DISK_2:多一个缓存副本。

OFF_HEAP:除了内存、磁盘,还可以存储在OFF_HEAP

场景:根据资源情况,将RDD缓存在不同的地方或者缓存多份

3)unpersist 算子 --释放缓存

  • 功能:将缓存的RDD进行释放

  • 语法:`unpersist`

  • unpersist(blocking=True):等释放完再继续下一步

  • 场景:明确RDD已经不再使用,后续还有很多的代码需要执行,将RDD的数据从缓存中释放,避免占用资源

  • 注意:如果不释放,这个Spark程序结束,也会释放这个程序中的所有内存

2、RDD容错机制:checkpoint检查点机制

问题:为了避免重复构建RDD,可以将RDD进行persist缓存,但是如果缓存丢失,还是会重新构建RDD,怎么解决?

checkpoint:检查点

  • 功能:将RDD的数据【不包含RDD依赖关系】存储在可靠的存储系统中:HDFS上

这个检查点有点类似于:虚拟机中的快照,像里程碑。

设置一个检查点目录

sc.setCheckpointDir("../datas/chk/chk1")

将RDD的数据持久化存储在HDFS

rs_rdd.checkpoint()

一定要在触发算子之前,调用checkpoint() 否则,检查点中没有数据

面试:RDD的cache、persist持久化机制和checkpoint检查点机制有什么区别?

相关推荐
你好~每一天12 分钟前
从传统行业到AI入门:我的CAIE Level I学习体验与思考
大数据·数据结构·人工智能·学习·jupyter·idea
G皮T16 分钟前
【Elasticsearch】索引别名 aliases
大数据·elasticsearch·搜索引擎·es·索引·索引别名·aliases
wyiyiyi26 分钟前
【数据结构+算法】非递归遍历二叉树的理解
大数据·数据结构·笔记·算法·leetcode·数据分析
爱跑步的程序员~33 分钟前
Elasticsearch倒排索引
java·大数据·elasticsearch·搜索引擎·全文检索
专注API从业者36 分钟前
构建分布式京东商品数据采集器:基于微服务的架构设计与实现
数据结构·数据库·分布式·微服务·架构
BlogCodeMan40 分钟前
【主流技术】浅析 ElasticSearch7.x 的基本结构及简单应用
spring boot·分布式·elasticsearch
k***216041 分钟前
MySQL 批量插入详解:快速提升大数据导入效率的实战方法
大数据·数据库·mysql
( ˶˙⚇˙˶ )୨⚑︎1 小时前
借助GitHub进行团队协作小组作业
大数据·vscode·github
琥珀食酒社1 小时前
菜鸟找到舒适区
大数据·人工智能
KKKlucifer1 小时前
数据分类分级为基的跨域流通权限动态管控技术:构建安全可控的跨域数据流通体系
大数据·数据库·人工智能