机器学习—TensorFlow实现

继续运行手写数字识别的示例,识别此图像,一个0还是1,我们所使用的是神经网络架构,其中有一个输入X,然后是第一个隐藏层,有25个单位,第二个隐藏层,有15个单元,然后一个输出单元,将得到一组由图像x组成的训练示例,以及地面真相标签Y。

如何训练这个神经网络的参数

和之前所写的类似,在这里要求TensorFlow按顺序串在一起,神经网络的这三层,第一个隐藏层,有25个单位和Z状结肠激活,第二个隐藏层有15个,最后是输出层;第二步是要求tensorflow编译模型,其关键步骤是指定要使用的损失函数是什么,在这种情况下,将使用一种神秘的稀疏名称------范畴交叉熵 ,指定了损失函数之后,第三步是调用fit函数,它告诉TensorFlow拟合在步骤一中使用损失指定的模型,或者在第二步中指定的数据集x y的成本函数,当我们谈到梯度下降时,我们必须决定梯度下降要走多少步或者梯度下降要跑多长时间,所以纪元是一个专业术语,对于像梯度下降这样的学习算法,你可能想要运行多少步。

总结一下,第一步是指定告诉TensorFlow的模型,如何计算推理,第二步是使用特定的损失函数编译模型,第三步是训练模型。

相关推荐
kngines14 分钟前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_0717 分钟前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全23 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王29 分钟前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天38 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.01 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉03071 小时前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
荔枝吻2 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901062 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
蓝婷儿2 小时前
Python 机器学习核心入门与实战进阶 Day 2 - KNN(K-近邻算法)分类实战与调参
python·机器学习·近邻算法