bert-base-uncased使用

1.下载模型

https://github.com/google-research/bert?tab=readme-ov-file

2.下载config.json和pytorch_model.bin

https://huggingface.co/google-bert/bert-base-uncased/tree/main

3.解压缩到同一文件夹

4.代码测试

复制代码
from transformers import BertModel,BertTokenizer

BERT_PATH = 'D:/bert/241109'

tokenizer = BertTokenizer.from_pretrained(BERT_PATH)

print(tokenizer.tokenize('I have an apple, thank you.'))

bert = BertModel.from_pretrained(BERT_PATH)

print('load bert model over')
相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
恰薯条的屑海鸥4 小时前
零基础在实践中学习网络安全-皮卡丘靶场(第十六期-SSRF模块)
数据库·学习·安全·web安全·渗透测试·网络安全学习
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
喜欢吃燃面5 小时前
C++刷题:日期模拟(1)
c++·学习·算法
海盗儿5 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器