bert-base-uncased使用

1.下载模型

https://github.com/google-research/bert?tab=readme-ov-file

2.下载config.json和pytorch_model.bin

https://huggingface.co/google-bert/bert-base-uncased/tree/main

3.解压缩到同一文件夹

4.代码测试

复制代码
from transformers import BertModel,BertTokenizer

BERT_PATH = 'D:/bert/241109'

tokenizer = BertTokenizer.from_pretrained(BERT_PATH)

print(tokenizer.tokenize('I have an apple, thank you.'))

bert = BertModel.from_pretrained(BERT_PATH)

print('load bert model over')
相关推荐
降临-max6 分钟前
JavaSE---网络编程
java·开发语言·网络·笔记·学习
LCG元24 分钟前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI43 分钟前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来1 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
大白的编程日记.1 小时前
【计算网络学习笔记】MySql的多版本控制MVCC和Read View
网络·笔记·学习·mysql
KG_LLM图谱增强大模型1 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网1 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp1 小时前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***48411 小时前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元1 小时前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能