从0开始学习机器学习--Day21--算法的评估标准

准确率和召回率(precision and recall)

在上一章我们提到了在每次运行算法时通过返回一个实数值来判断算法的好坏,但是我们该如何构建这个实数的计算公式呢,毕竟这关乎于我们对算法的判断,不能过于夸大或贬低。有一个典型的会被影响的很大例子叫做偏斜类问题。

假如我们在一个机器学习算法的验证集中得到的错误率是1%,而另一个算法中的错误率是0.5%,那么是不是意味着第二个算法肯定比第一个好呢。实际上,假如我们的训练集中正样本和负样本的比例很极端,我们并不能武断地直接用预测正确率来判断算法好坏。就像我们刚刚说的,第二个算法的逻辑很简单,他总是预测结果是0,即负样本,那么在一个正负样本比例很极端的训练集中,后者有着天然的优势,所以单纯靠预测正确率来判断并不能检验算法的好坏,我们把这种样本集中一类比另一类样本多很多的问题称为偏斜类问题。

在遇到偏斜类问题时,我们一般会用叫做查准率和召回率的数据来判断算法的好坏。 ,两者都是越高越好,前者代表预测为真的准确率,后者代表预测真数据的效率。

但并不是所有的问题都要用到这两个度量标准,事实上这取决于问题的条件限制。例如,在癌症分类问题中,我们会将概率从0.5改为0.7,即当我们认为该病人有大于等于70%概率得癌症的时候才下判断,毕竟这是一个听起来很恐怖的事情,而在这个时候我们的查准率也会随我们对标准放宽而提高;但如果我们的目的是想要尽量避免漏掉癌症病人,不想要错过最佳的治疗窗口期,那么这个时候就会将概率改为0.3,放低界限,那么类似的我们的召回率就会升高,准确率就会降低。

根据所选概率变化的准确率和召回率

如图,我们可以看到一个横轴为召回率,纵轴为准确率的图像,线上的点代表不同的概率。这就像是一个滑动变阻器,按照不同的环境,通过移动中间的点来选取合适的值。

但仅仅是这样似乎还不够能帮我们判断,为了能考虑到偏斜类问题,我们提出了一个参考值,假设准确率为,召回率为,我们用来判断,这能避免我们忽略召回率的问题。

视频参考:https://www.bilibili.com/video/BV1By4y1J7A5?spm_id_from=333.788.player.switch&vd_source=867b8ecbd62561f6cb9b4a83a368f691&p=68

相关推荐
xiaoxiaoxiaolll4 小时前
前沿速递 | Adv. Eng. Mater.:基于LPBF与压力渗透的FeSi2.9-Bakelite多功能复合材料设计与性能调控
学习
Freshman小白4 小时前
《人工智能与创新》网课答案2025
人工智能·学习·答案·网课答案
Y_fulture4 小时前
datawhale组队学习:第一章习题
学习·机器学习·概率论
阿蒙Amon4 小时前
JavaScript学习笔记:15.迭代器与生成器
javascript·笔记·学习
阿湯哥4 小时前
当前主流AI Agent框架深度分析报告
人工智能
来两个炸鸡腿4 小时前
DW动手学大模型应用全栈开发 - (1)大模型应用开发应知必会
python·深度学习·学习·nlp
陈喜标bill4 小时前
S2B2C私域会员电商如何重构企业经营逻辑
大数据·人工智能·重构
donecoding4 小时前
掌握 :focus-within,让你的AI对话输入体验更上一层楼!
前端·人工智能
newrank_kk4 小时前
AI 搜索时代新战场:智汇GEO 如何重构品牌 AI 形象管理规则
人工智能·重构
qq_418247884 小时前
恒源云/autodl与pycharm远程连接
ide·人工智能·python·神经网络·机器学习·pycharm·图论