Pytorch学习--神经网络--网络模型的保存与读取

一、网络模型的保存与读取方式1

方法讲解


保存模型

python 复制代码
import torch
import torchvision
model = torchvision.models.vgg16(weights='DEFAULT')
#保存模型和参数
torch.save(model,"save_method1.pth")

读取模型

python 复制代码
import torch
model = torch.load("save_method1.pth")
print(model)

输出:

比较坑人的点

使用 torch.save 必须将该模型的架构引入到该文件中(可以使用from A import B的方式来解决),这里举一个例子来说明

保存模型

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear

#保存模型和参数

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x
Yorelee = Mary()
torch.save(Yorelee,"save_method1_question.pth")

读取模型

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear

model = torch.load("save_method1_question.pth")

print(model)

报错如下

说明我们还要把 Mary 这个框架复制到读取模型的.py文件中

重新更正后的读取模型代码

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear

class Mary(nn.Module):
    def __init__(self):
        super(Mary,self).__init__()
        self.model1 = nn.Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self,x):
        x = self.model1(x)
        return x

model = torch.load("save_method1_question.pth")

print(model)
或者
python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch_save import Mary   #这里仅举一个例子


model = torch.load("save_method1_question.pth")

print(model)

二、网络模型的保存与读取方式2

保存模型参数

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


vgg_model = torchvision.models.vgg16(weights='DEFAULT')
#保存参数
torch.save(vgg_model.state_dict(),"save_method2.pth")

读取模型参数

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear

vgg_model = torchvision.models.vgg16(weights='DEFAULT')
parameter = torch.load("save_method2.pth")
vgg_model.load_state_dict(parameter)
print(vgg_model)
相关推荐
scan7246 分钟前
LILAC采样算法
人工智能·算法·机器学习
leaf_leaves_leaf9 分钟前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零114 分钟前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
404NooFound21 分钟前
Python轻量级NoSQL数据库TinyDB
开发语言·python·nosql
爱喝热水的呀哈喽30 分钟前
《机器学习》支持向量机
人工智能·决策树·机器学习
天天要nx33 分钟前
D102【python 接口自动化学习】- pytest进阶之fixture用法
python·pytest
minstbe33 分钟前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
月眠老师37 分钟前
AI在生活各处的利与弊
人工智能
落魄实习生1 小时前
AI应用-本地模型实现AI生成PPT(简易版)
python·ai·vue·ppt
四口鲸鱼爱吃盐1 小时前
Pytorch | 从零构建MobileNet对CIFAR10进行分类
人工智能·pytorch·分类