排序算法之归并排序

归并排序(Merge Sort)

归并排序是一种分治算法(Divide and Conquer),用于将一个无序数组或链表按照一定的顺序排序(通常是升序)。归并排序的核心思想是:将数组分为两个子数组,分别排序后再合并起来,最终得到一个有序的数组。

有两种方法实现归并排序

第一种是迭代法(自底向上归并法) ,第二种是递归法(自顶向下归并法)

迭代法

通过增加归并排序区间,多次小区间的归并,从而实现整个数组的排序

cpp 复制代码
void sort_(int*,int,int,int);
void merge_sort1(int* nums,int length)
{ 
    int* temp=new int[length];    
    for(int i=1;i<length;i*=2)       //不断增加归并区间i
    {   
        int index=0;                 //归并区间距离改变 从头开始迭代 
        
        /*可以分配2个i区间*/
        while(index+2*i<=length)      
        {
             index+=2*i;               
             sort_(nums,temp,index-2*i,index-i,index); //2*i的区间 归并左i区间和右i区间
        }

        /不足以分配2个i区间/
        if(index+i<length)  sort_(nums,temp,index,index+i,length);
    }  
    delete []temp; 
}
void sort_(int* nums,int* temp,int start,int mid,int end) //头闭尾开
{
    cout<<"归并的区间为"<<start<<" "<<mid<<" "<<end<<endl;
    int l=start;
    int r=mid;
    int index=0;
    while(index<end-start)
    {    
        if(l<mid&&(r==end||nums[l]<nums[r]))  //当左边小于右边或者右区间没有数据时
        {
            temp[index++]=nums[l++];   
        }  
        else temp[index++]=nums[r++];
    }  
    
    /*拷贝数据*/
    for(int i=0;i<end-start;i++)
    {
        nums[i+start]=temp[i];       
    }
}

通过改变归并区间大小不断的扫描整个数组

递归法

cpp 复制代码
void sort_(int*,int,int,int)
void merge_sort2(int* nums,int start,int end)
{
    if(end-start<2)  return;  //只有一个元素则退出递归
    int mid=(start+end)/2;
    merge_sort2(nums,start,mid);   //递归进入左半区间
    merge_sort2(nums,mid,end);     //递归进入右半区间
    sort_(nums,start,mid,end);     //归并当前的左右区间
}

void sort_(int* nums,int start,int mid,int end) //头闭尾开
{
    cout<<"归并的区间为"<<start<<" "<<mid<<" "<<end<<endl;
    int l=start;
    int r=mid;
    int index=0;
    int* temp=new int[end-start];
    while(index<end-start)
    {    
        if(l<mid&&(r==end||nums[l]<nums[r]))  //当左边小于右边或者右区间没有数据时
        {
            temp[index++]=nums[l++];   
        }  
        else temp[index++]=nums[r++];
    }  
    
    /*拷贝数据*/
    for(int i=0;i<end-start;i++)
    {
        nums[i+start]=temp[i];       
    }
    delete[]temp;
}

可以看出它是不断的递归进入自己的左右区间,递归到左右只有一个元素然后再向上合并

两种方法的时间复杂度都为O(nlog⁡n)

这里的迭代法的空间复杂度为O(n),递归法空间复杂度为 O(nlog⁡n),你可以传一个临时数组以达到O(n)并且可以减少new和delete带来的开销

进阶版:实现对链表的归并排序

相关推荐
SoraLuna1 小时前
「Mac玩转仓颉内测版26」基础篇6 - 字符类型详解
开发语言·算法·macos·cangjie
雨中rain2 小时前
贪心算法(2)
算法·贪心算法
sjsjs114 小时前
【数据结构-表达式解析】【hard】力扣224. 基本计算器
数据结构·算法·leetcode
C++忠实粉丝4 小时前
计算机网络socket编程(6)_TCP实网络编程现 Command_server
网络·c++·网络协议·tcp/ip·计算机网络·算法
坊钰4 小时前
【Java 数据结构】时间和空间复杂度
java·开发语言·数据结构·学习·算法
武昌库里写JAVA4 小时前
一文读懂Redis6的--bigkeys选项源码以及redis-bigkey-online项目介绍
c语言·开发语言·数据结构·算法·二维数组
禊月初三4 小时前
LeetCode 4.寻找两个中序数组的中位数
c++·算法·leetcode
学习使我飞升4 小时前
spf算法、三类LSA、区间防环路机制/规则、虚连接
服务器·网络·算法·智能路由器
庞传奇5 小时前
【LC】560. 和为 K 的子数组
java·算法·leetcode
SoraLuna5 小时前
「Mac玩转仓颉内测版32」基础篇12 - Cangjie中的变量操作与类型管理
开发语言·算法·macos·cangjie