【论文笔记】Parameter-Efficient Transfer Learning for NLP

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Parameter-Efficient Transfer Learning for NLP
作者 : Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly
发表 : ICML 2019
arXiv : https://arxiv.org/abs/1902.00751

摘要

参数高效的NLP迁移学习对NLP中的大型预训练模型微调是一种有效的迁移机制。

然而,在存在许多下游任务的情况下,微调在参数上效率低下:每个任务都需要一个全新的模型。

作为替代方案,我们提出了带有适配器模块的迁移。

适配器模块产生一个紧凑且可扩展的模型;它们为每个任务仅添加少量可训练参数,并且可以添加新任务而无需重新访问之前的任务。

原始网络的参数保持不变,从而实现了高度的参数共享。

为了证明适配器的有效性,我们将最近提出的BERT Transformer模型迁移到26个不同的文本分类任务中,包括GLUE基准。

适配器达到了接近最先进的性能,而每个任务仅添加少量参数。

在GLUE上,我们的性能与完全微调相差0.4%,每个任务仅添加3.6%的参数。

相比之下,微调为每个任务训练了100%的参数。

Adapter tuning与全量微调两种微调方法微调效果随可训练参数量变化的比较。

Adapter tuning

在Transformer Layer的各个模块之间加入Adapter Layer。

Adapter Layer将特征由高维降至低维,经过非线性函数再从低维恢复到高维,并带有残差连接。

微调时冻结其他参数,只微调Adapter Layer。

实验

相关推荐
全知科技6 分钟前
AI赋能数据分类分级,迈向智能化数据治理
大数据·人工智能
2501_9416649622 分钟前
人工智能赋能智慧金融互联网应用:智能风控、投资分析与客户管理实践探索》
人工智能
paopao_wu38 分钟前
目标检测YOLO[03]:推理入门
人工智能·yolo·目标检测
让学习成为一种生活方式40 分钟前
ANNEVO v2.1安装与使用--生信工具61
人工智能
_张一凡1 小时前
【AIGC面试面经第六期】AI视频-训练与微调技相关问答
人工智能·面试·aigc
智算菩萨1 小时前
《从弱人工智能到强人工智能:概念、边界与技术谱系全解析》
人工智能
极客BIM工作室1 小时前
多模态大模型Flamingo:视觉与文本交错输入?如何训练和推理?
人工智能·机器学习
热心网友俣先生2 小时前
2025年APMCM亚太数学建模C题AI+人工精翻版本+数据收集方式介绍+数据分享
c语言·人工智能·数学建模
轻微的风格艾丝凡2 小时前
光伏 MPPT 算法介绍
人工智能·算法·光伏
UMI赋能企业2 小时前
智能决策引擎助力科技企业转型升级
大数据·人工智能