【论文笔记】Parameter-Efficient Transfer Learning for NLP

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Parameter-Efficient Transfer Learning for NLP
作者 : Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly
发表 : ICML 2019
arXiv : https://arxiv.org/abs/1902.00751

摘要

参数高效的NLP迁移学习对NLP中的大型预训练模型微调是一种有效的迁移机制。

然而,在存在许多下游任务的情况下,微调在参数上效率低下:每个任务都需要一个全新的模型。

作为替代方案,我们提出了带有适配器模块的迁移。

适配器模块产生一个紧凑且可扩展的模型;它们为每个任务仅添加少量可训练参数,并且可以添加新任务而无需重新访问之前的任务。

原始网络的参数保持不变,从而实现了高度的参数共享。

为了证明适配器的有效性,我们将最近提出的BERT Transformer模型迁移到26个不同的文本分类任务中,包括GLUE基准。

适配器达到了接近最先进的性能,而每个任务仅添加少量参数。

在GLUE上,我们的性能与完全微调相差0.4%,每个任务仅添加3.6%的参数。

相比之下,微调为每个任务训练了100%的参数。

Adapter tuning与全量微调两种微调方法微调效果随可训练参数量变化的比较。

Adapter tuning

在Transformer Layer的各个模块之间加入Adapter Layer。

Adapter Layer将特征由高维降至低维,经过非线性函数再从低维恢复到高维,并带有残差连接。

微调时冻结其他参数,只微调Adapter Layer。

实验

相关推荐
AnnyYoung11 分钟前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND1 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木1 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳1 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客1 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译
冰淇淋百宝箱2 小时前
AI 安全时代:SDL与大模型结合的“王炸组合”——技术落地与实战指南
人工智能·安全
Elastic 中国社区官方博客2 小时前
Elasticsearch Open Inference API 增加了对 Jina AI 嵌入和 Rerank 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jina
AWS官方合作商3 小时前
Amazon Lex:AI对话引擎重构企业服务新范式
人工智能·ai·机器人·aws
workflower3 小时前
Prompt Engineering的重要性
大数据·人工智能·设计模式·prompt·软件工程·需求分析·ai编程
curemoon3 小时前
理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
人工智能·算法·矩阵