【论文笔记】Parameter-Efficient Transfer Learning for NLP

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Parameter-Efficient Transfer Learning for NLP
作者 : Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly
发表 : ICML 2019
arXiv : https://arxiv.org/abs/1902.00751

摘要

参数高效的NLP迁移学习对NLP中的大型预训练模型微调是一种有效的迁移机制。

然而,在存在许多下游任务的情况下,微调在参数上效率低下:每个任务都需要一个全新的模型。

作为替代方案,我们提出了带有适配器模块的迁移。

适配器模块产生一个紧凑且可扩展的模型;它们为每个任务仅添加少量可训练参数,并且可以添加新任务而无需重新访问之前的任务。

原始网络的参数保持不变,从而实现了高度的参数共享。

为了证明适配器的有效性,我们将最近提出的BERT Transformer模型迁移到26个不同的文本分类任务中,包括GLUE基准。

适配器达到了接近最先进的性能,而每个任务仅添加少量参数。

在GLUE上,我们的性能与完全微调相差0.4%,每个任务仅添加3.6%的参数。

相比之下,微调为每个任务训练了100%的参数。

Adapter tuning与全量微调两种微调方法微调效果随可训练参数量变化的比较。

Adapter tuning

在Transformer Layer的各个模块之间加入Adapter Layer。

Adapter Layer将特征由高维降至低维,经过非线性函数再从低维恢复到高维,并带有残差连接。

微调时冻结其他参数,只微调Adapter Layer。

实验

相关推荐
IT_Octopus3 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能8 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客13 分钟前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条21 分钟前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po22 分钟前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条22 分钟前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞26 分钟前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go
清流君40 分钟前
【MySQL】数据库 Navicat 可视化工具与 MySQL 命令行基本操作
数据库·人工智能·笔记·mysql·ue5·数字孪生
Blossom.1181 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
biter00881 小时前
ubuntu(28):ubuntu系统多版本conda和多版本cuda共存
linux·人工智能·ubuntu·conda