【论文笔记】Parameter-Efficient Transfer Learning for NLP

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Parameter-Efficient Transfer Learning for NLP
作者 : Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly
发表 : ICML 2019
arXiv : https://arxiv.org/abs/1902.00751

摘要

参数高效的NLP迁移学习对NLP中的大型预训练模型微调是一种有效的迁移机制。

然而,在存在许多下游任务的情况下,微调在参数上效率低下:每个任务都需要一个全新的模型。

作为替代方案,我们提出了带有适配器模块的迁移。

适配器模块产生一个紧凑且可扩展的模型;它们为每个任务仅添加少量可训练参数,并且可以添加新任务而无需重新访问之前的任务。

原始网络的参数保持不变,从而实现了高度的参数共享。

为了证明适配器的有效性,我们将最近提出的BERT Transformer模型迁移到26个不同的文本分类任务中,包括GLUE基准。

适配器达到了接近最先进的性能,而每个任务仅添加少量参数。

在GLUE上,我们的性能与完全微调相差0.4%,每个任务仅添加3.6%的参数。

相比之下,微调为每个任务训练了100%的参数。

Adapter tuning与全量微调两种微调方法微调效果随可训练参数量变化的比较。

Adapter tuning

在Transformer Layer的各个模块之间加入Adapter Layer。

Adapter Layer将特征由高维降至低维,经过非线性函数再从低维恢复到高维,并带有残差连接。

微调时冻结其他参数,只微调Adapter Layer。

实验

相关推荐
لا معنى له24 分钟前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI2 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.4 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight4 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha4 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir4 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王5 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室6 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛116 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI6 小时前
RAG系列(一) 架构基础与原理
人工智能·架构