【论文笔记】Parameter-Efficient Transfer Learning for NLP

🍎个人主页:小嗷犬的个人主页

🍊个人网站:小嗷犬的技术小站

🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题 : Parameter-Efficient Transfer Learning for NLP
作者 : Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, Sylvain Gelly
发表 : ICML 2019
arXiv : https://arxiv.org/abs/1902.00751

摘要

参数高效的NLP迁移学习对NLP中的大型预训练模型微调是一种有效的迁移机制。

然而,在存在许多下游任务的情况下,微调在参数上效率低下:每个任务都需要一个全新的模型。

作为替代方案,我们提出了带有适配器模块的迁移。

适配器模块产生一个紧凑且可扩展的模型;它们为每个任务仅添加少量可训练参数,并且可以添加新任务而无需重新访问之前的任务。

原始网络的参数保持不变,从而实现了高度的参数共享。

为了证明适配器的有效性,我们将最近提出的BERT Transformer模型迁移到26个不同的文本分类任务中,包括GLUE基准。

适配器达到了接近最先进的性能,而每个任务仅添加少量参数。

在GLUE上,我们的性能与完全微调相差0.4%,每个任务仅添加3.6%的参数。

相比之下,微调为每个任务训练了100%的参数。

Adapter tuning与全量微调两种微调方法微调效果随可训练参数量变化的比较。

Adapter tuning

在Transformer Layer的各个模块之间加入Adapter Layer。

Adapter Layer将特征由高维降至低维,经过非线性函数再从低维恢复到高维,并带有残差连接。

微调时冻结其他参数,只微调Adapter Layer。

实验

相关推荐
yiersansiwu123d2 分钟前
生成式AI落地潮:从技术狂热到商业价值重构
人工智能·重构
luoganttcc6 分钟前
除了视觉伺服 还有哪些 方法
人工智能
ST小智7 分钟前
2025年创作历程回顾与个人生活平衡
大数据·linux·人工智能
weixin_4379881213 分钟前
范式智能发布“风控哨兵”大模型 引领金融风控新范式
人工智能
哥本哈士奇14 分钟前
使用Gradio构建AI前端 - RAG的QA模块
前端·人工智能·状态模式
5G全域通17 分钟前
面向5G复杂性的下一代运维技术体系:架构、工具与实践
大数据·运维·人工智能·5g·架构
你们补药再卷啦19 分钟前
人工智能算法概览
人工智能·算法
悟纤22 分钟前
续写卡在 2 秒?解决方案全解析|Suno 进阶指南|第 13 篇
人工智能·suno·suno ai·suno api·ai music
RockHopper202530 分钟前
企业运营认知机器人的落地规范说明 —— 一种以工程化实现/商业化落地为目的设计原则
人工智能·llm·认知机器人·认知导向
吃人陈乐游刘31 分钟前
05实战经验X-anylabelingAI自动标注数据集-onnx简单解绍(2025年12月)
人工智能·深度学习