DataFrame

目录

一、创建DataFrame

在SparkSql中SparkSession是创建DataFrame和执行Sql的入口,创建DataFrame有三种方式:

  1. 通过Spark的数据源进行创建

  2. 从一个存在的RDD进行转换

  3. 从Hive Table进行查询返回

二、Sql语法

Sql语法风格是指我们查询数据的时候使用Sql语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助

注意:

普通临时表是Session范围内的,如果想应用范围内有效,可以使用全局临时表,使用全局临时表时需要全路径访问,如:global_temp.people

对于DataFrame创建一个全局表:

df.createGlobalTempView("people")

通过Sql语句实现查询全表

三、DSL语法

DataFrame提供了一个特定领域语言(domain-specific language,DSL)去管理结构化的数据,可以在Scala,Java,Python和R中使用DSL,使用DSL语法风格不必去创建临时视图了

注意:

当涉及到运算的时候,每列都必须使用$,或者采用引号表达式:单引号+字段名

起别名:

查看age大于等于30的数据:

根据 age 分组,查看数据条数

四、RDD与DataFrame互相转换

在IDEA中开发程序时,如果需要RDD与DF或者DS之间互相操作,那么需要引入:

import spark.implicits._

这里的spark不是scala中的包名,而是创建的sparkSession对象的变量名称,所以必须先创建SparkSession对象再导入,这里的spark对象不能使用var声明,因为scala只支持val修饰的对象的引入,spark-shell中无需导入,自动完成此操作

用var修饰的话,编译不通过

rdd与dataframe互相转换:

scala 复制代码
 val spark: SparkSession = SparkSession
      .builder()
      .master("local[*]")
      .getOrCreate()

    import spark.implicits._

    val rdd: RDD[Int] = spark.sparkContext.makeRDD(List(1,2,3,4,5))

    val df: DataFrame = rdd.toDF("id")

    val rdd2: RDD[Row] = df.rdd

    df.show()

    println("-" * 100)

    rdd2.collect().foreach(println)
相关推荐
B站计算机毕业设计超人1 天前
计算机毕业设计hadoop+spark股票基金推荐系统 股票基金预测系统 股票基金可视化系统 股票基金数据分析 股票基金大数据 股票基金爬虫
大数据·hadoop·python·spark·课程设计·数据可视化·推荐算法
WorkAgent2 天前
windows下本地部署安装hadoop+scala+spark-【不需要虚拟机】
hadoop·spark·scala
村口蹲点的阿三2 天前
Spark SQL 中对 Map 类型的操作函数
javascript·数据库·hive·sql·spark
唯余木叶下弦声2 天前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark
村口蹲点的阿三3 天前
spark sql中对array数组类型操作函数列表
大数据·数据库·hive·sql·spark·database
青云游子3 天前
spark,读取和写入同一张表问题
大数据·分布式·spark
StarRocks_labs4 天前
从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型
大数据·架构·spark·湖仓一体·lakehouse