DataFrame

目录

一、创建DataFrame

在SparkSql中SparkSession是创建DataFrame和执行Sql的入口,创建DataFrame有三种方式:

  1. 通过Spark的数据源进行创建

  2. 从一个存在的RDD进行转换

  3. 从Hive Table进行查询返回

二、Sql语法

Sql语法风格是指我们查询数据的时候使用Sql语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助

注意:

普通临时表是Session范围内的,如果想应用范围内有效,可以使用全局临时表,使用全局临时表时需要全路径访问,如:global_temp.people

对于DataFrame创建一个全局表:

复制代码
df.createGlobalTempView("people")

通过Sql语句实现查询全表

三、DSL语法

DataFrame提供了一个特定领域语言(domain-specific language,DSL)去管理结构化的数据,可以在Scala,Java,Python和R中使用DSL,使用DSL语法风格不必去创建临时视图了

注意:

当涉及到运算的时候,每列都必须使用$,或者采用引号表达式:单引号+字段名

起别名:

查看age大于等于30的数据:

根据 age 分组,查看数据条数

四、RDD与DataFrame互相转换

在IDEA中开发程序时,如果需要RDD与DF或者DS之间互相操作,那么需要引入:

复制代码
import spark.implicits._

这里的spark不是scala中的包名,而是创建的sparkSession对象的变量名称,所以必须先创建SparkSession对象再导入,这里的spark对象不能使用var声明,因为scala只支持val修饰的对象的引入,spark-shell中无需导入,自动完成此操作

用var修饰的话,编译不通过

rdd与dataframe互相转换:

scala 复制代码
 val spark: SparkSession = SparkSession
      .builder()
      .master("local[*]")
      .getOrCreate()

    import spark.implicits._

    val rdd: RDD[Int] = spark.sparkContext.makeRDD(List(1,2,3,4,5))

    val df: DataFrame = rdd.toDF("id")

    val rdd2: RDD[Row] = df.rdd

    df.show()

    println("-" * 100)

    rdd2.collect().foreach(println)
相关推荐
鸿乃江边鸟12 小时前
Spark Datafusion Comet 向量化Rust Native-- 数据写入
大数据·rust·spark·native
亚林瓜子12 小时前
Spark SQL中时间戳条件约束与字符串判空
大数据·sql·spark·string·timestamp
亚林瓜子1 天前
AWS中国云中的ETL之从Amazon Glue Data Catalog搬数据到MySQL(Glue版)
python·mysql·spark·etl·aws·glue·py
【赫兹威客】浩哥1 天前
【赫兹威客】伪分布式Spark测试教程
大数据·分布式·spark
yumgpkpm1 天前
在AI语言大模型时代 Cloudera CDP(华为CMP 鲲鹏版)对自有知识的保护
人工智能·hadoop·华为·zookeeper·spark·kafka
计算机毕业编程指导师1 天前
【Python大数据选题】基于Hadoop+Spark奥运会金牌榜可视化分析系统源码 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·奥运会金牌
【赫兹威客】浩哥2 天前
【赫兹威客】完全分布式Spark测试教程
大数据·分布式·spark
鸿乃江边鸟2 天前
Spark Datafusion Comet 向量化Rule--CometExecRule分析 规则转换分析
大数据·spark·native
Light603 天前
领码 SPARK aPaaS 前端开发体系 技术架构(最终版)
低代码·spark·前端架构·apaas·模型驱动·能力分层·上下文契约
【赫兹威客】浩哥3 天前
【赫兹威客】完全分布式Hive(on Spark)测试教程
hive·分布式·spark