机器学习 笔记

特征值提取

字典

from sklearn.extaction import DictVectorizer

m=DictVectorizer(sparse=False)#sparse是否转换成三元组形式

data=[], #传入字典数据

data1=model.fit_transform(data) #使用API

英文特征值提取

from sklearn.feature_extraction.text import CountVectorizer

data=[]

transfer=CountVectorizer(stop_words=])#创建词频提取对象

x=transfer.fit_transform(data)# 提取词频

中文特征值提取

from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer

import jieba # 导入jieba用于断词中文字符串

import pandas as pd

def text_cut(text):

return "-".join(jieba.cut(text)) # 函数断词

data=[]

data1=(text_cut(i) for i in data) # 推导式

transfer=TfidfVectorizer(stop_words=[])

re=transfer.fit_transform(data1)

data2=pd.DataFrame(data=re.toarray(),columns=transfer.get_feature_names_out())

无量纲化-预处理

归一化

这里的 Xmin 和 Xmax 分别是每种特征中的最小值和最大值,而 ��是当前特征值,Xscaled 是归一化后的特征值。

标准化

相关推荐
William.csj14 分钟前
Pytorch——查看模型的推理引擎
人工智能·pytorch
NAGNIP15 分钟前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法
云原生社区18 分钟前
Fabric:为你的命令行安上 AI 管道
人工智能·开源·github
NAGNIP19 分钟前
一文搞懂KV-Cache
人工智能·算法
不摸鱼19 分钟前
顶级AI评论员:算力狂飙撞墙后,AI的下一场革命靠什么?| 不摸鱼的独立开发者日报(第43期)
人工智能·开源·资讯
二闹24 分钟前
第十六章:监理基础知识(16.1监理的意义和作用--16.5监理要素)
笔记·产品经理
自由的疯26 分钟前
用 Java 构建你的第一个智能聊天机器人:AI 自然语言处理实战
人工智能
AgeClub1 小时前
服务600+养老社区,Rendever如何通过“VR+养老”缓解老年孤独?
大数据·人工智能
rocksun1 小时前
OneUptime MCP服务器:AI原生可观测性融入你的工作流程
人工智能·监控