机器学习 笔记

特征值提取

字典

from sklearn.extaction import DictVectorizer

m=DictVectorizer(sparse=False)#sparse是否转换成三元组形式

data=[], #传入字典数据

data1=model.fit_transform(data) #使用API

英文特征值提取

from sklearn.feature_extraction.text import CountVectorizer

data=[]

transfer=CountVectorizer(stop_words=])#创建词频提取对象

x=transfer.fit_transform(data)# 提取词频

中文特征值提取

from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer

import jieba # 导入jieba用于断词中文字符串

import pandas as pd

def text_cut(text):

return "-".join(jieba.cut(text)) # 函数断词

data=[]

data1=(text_cut(i) for i in data) # 推导式

transfer=TfidfVectorizer(stop_words=[])

re=transfer.fit_transform(data1)

data2=pd.DataFrame(data=re.toarray(),columns=transfer.get_feature_names_out())

无量纲化-预处理

归一化

这里的 Xmin 和 Xmax 分别是每种特征中的最小值和最大值,而 ��是当前特征值,Xscaled 是归一化后的特征值。

标准化

相关推荐
德迅云安全—珍珍1 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
cnxy1883 小时前
围棋对弈Python程序开发完整指南:步骤4 - 提子逻辑和劫争规则实现
开发语言·python·机器学习
数新网络3 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
TheSumSt3 小时前
Python丨课程笔记Part3:语法进阶部分(控制结构与基础数据结构)
数据结构·笔记·python
Codebee3 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch4 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手4 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1334 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯4 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q4 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习