基于MATLAB刻度线表盘识别系统

  1. 实验背景

指针式机械表盘具有安装维护方便、结构简单、防电磁干扰等诸多优点, 目前广泛应用于工矿企业、能源及计量等部门。随着仪表数量的增加及精密仪表技术的发展,人工判读已经不能满足实际应用需求。随着计算机技术和图像处理技术的不断发展,指针式机械表自动读表技术应运而生。该技术提高了表盘识别的自动化程度及实时性,将代替传统工业仪表的读取方式得到广泛应用。
2. 实验目的
(1)了解机械式表盘自动读表技术的基本原理。
(2)了解仪器表盘识别技术的基本方法和相关算法。
(3)学会利用MATLAB实现对图像的边缘检测、图像边缘锐化、二值化处理、Hough变换等图像处理技术。
3. 实验原理

根据机械式表盘的图像特征,采用图像边缘点法线方向计数累加的圆心定位方法及过定点的直线检测算法,达到表盘识别的目标。仪表刻度检测流程如下: 摄像头采集表盘图像,送入计算机进行预处理及边缘检测操作;计算机检测出表盘回转中心及半径,并定位出表盘的有效显示区域;在此区域内,利用过定点( 回转中心)的Hough 直线变换,基于特征点对应角度的峰值搜索算法识别出指针中心线,从而输出检测结果。
4 实验要求
(1)自选一副仪表图片。读入图像,对图像进行预处理及边缘检测操作。
(2)采用平滑滤波法对图像进行处理,滤波的同时锐化图像的边缘。
(3)通过对读入的仪表图像进行处理,能清楚的识别表盘指针指数,且具有较准确的识别精度。

5运行结果

  1. 实验程序
    RGB=imread('14.jpg');
    figure,imshow(RGB); title('RGB')
    GRAY=rgb2gray(RGB);
    figure,imshow(GRAY); title('GRAY')
    threshold=graythresh(GRAY);
    BW=im2bw(GRAY,threshold);
    figure,imshow(BW); title('BW')
    BW=~BW;
    figure,imshow(BW); title('~BW')
    BW=bwmorph(BW,'thin',Inf);
    figure,imshow(BW); title('BWMORPH')
    [M,N]=size(BW);
    [H,T,R] = hough(BW);
    figure;
    imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
    xlabel('\theta'), ylabel('\rho');
    axis on, axis normal, hold on;
    P = houghpeaks(H,1,'threshold',ceil(0.3*max(H(:))));
    x = T(P(:,2));
    y = R(P(:,1));
    plot(x,y,'s','color','white');
    %%%%%%%%%%%%%%%%%%%% Find lines and plot them%%%%%%%%%%%%%%
    for k = 1:length(lines)
    xy = [lines(k).point1; lines(k).point2];
    plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
    %%%%%%%%%% plot beginnings and ends of lines%%%%%%%%%%%%%%%%%%
    plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
    %%%% determine the endpoints of the longest line segment %%%%
    len = norm(lines(k).point1 - lines(k).point2);
    if ( len > max_len)
    max_len = len;
    xy_long = xy;
    end
    end
    %%%%%%%%%%%%% highlight the longest line segment%%%%%%%%%%%%%%
    plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');
    k=(xy(2,2)-xy(1,2))/(xy(2,1)-xy(1,1));
    theta=pi/2+atan(k);
    if((xy(1,1)+xy(2,1))/2<=N/2)
    q=(theta+pi)*180/3.14;
    else
    q=theta*180/3.14;

end
shishu=q*6/2700-0.2;
disp (theta);
disp (q);
disp (shishu);

相关推荐
华清远见IT开放实验室1 小时前
【每天学点AI】实战图像增强技术在人工智能图像处理中的应用
图像处理·人工智能·python·opencv·计算机视觉
火山口车神丶1 小时前
某车企ASW面试笔试题
c++·matlab
只怕自己不够好1 小时前
《OpenCV 图像缩放、翻转与变换全攻略:从基础操作到高级应用实战》
人工智能·opencv·计算机视觉
今天吃饺子2 小时前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
HPC_fac130520678165 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd7 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
如若12312 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
Evand J14 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
加密新世界14 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
哈市雪花15 小时前
图像处理 之 凸包和最小外围轮廓生成
图像处理·人工智能·图形学·最小外围轮廓·最小外包