图文组合-pytorch实现

在图文组合任务中,常见的图文融合方式有多种,比如简单的拼接、加权求和、注意力机制、跨模态Transformer等。为了让图片充分补充文本的语义信息,我们可以使用一种简单且有效的图文融合方法,比如通过注意力机制。

我们可以让文本特征作为查询(Query),图片特征作为键(Key)和值(Value),通过注意力机制让文本特征从图片特征中获取信息。这样,图片特征就可以在文本的指导下为每个文本单词提供补充信息。

核心步骤:

图片特征扩展:由于图片特征是 [1, 768],而文本特征是 [8, 768],我们可以将图片特征扩展成与文本特征相同的形状 [8, 768]。

注意力机制:使用文本特征作为查询(Query),图片特征作为键(Key)和值(Value),计算注意力权重并融合特征。

融合输出:得到新的文本表示,它不仅包含原始文本的语义信息,还从图片中获取了相关的视觉信息。

python 复制代码
import torch
import torch.nn as nn

class ImageTextFusion(nn.Module):
    def __init__(self, feature_dim, num_heads):
        super(ImageTextFusion, self).__init__()
        self.feature_dim = feature_dim
        self.text_proj = nn.Linear(feature_dim, feature_dim)   # 映射文本特征
        self.image_proj = nn.Linear(feature_dim, feature_dim)  # 映射图片特征
        self.attention = nn.MultiheadAttention(embed_dim=feature_dim, num_heads=num_heads)

    def forward(self, image_feat, text_feat):
        """
        image_feat: 图片特征, shape [1, 768]
        text_feat: 文本特征, shape [8, 768]
        """
        # 扩展图片特征到与文本特征相同的形状
        image_feat_expanded = image_feat.expand(text_feat.size(0), -1)  # [8, 768]

        # 映射特征
        image_feat_proj = self.image_proj(image_feat_expanded)  # [8, 768]
        text_feat_proj = self.text_proj(text_feat)  # [8, 768]

        # 将文本特征作为查询,图片特征作为键和值
        attn_output, attn_weights = self.attention(
            query=text_feat_proj.unsqueeze(1),  # [8, 1, 768]
            key=image_feat_proj.unsqueeze(1),   # [8, 1, 768]
            value=image_feat_proj.unsqueeze(1), # [8, 1, 768]
            need_weights=False
        )

        # 将输出重新变形回 [8, 768]
        fused_text_feat = attn_output.squeeze(1)  # [8, 768]
        return fused_text_feat

# 示例输入
image_feat = torch.randn(1, 768)  # 图片特征
text_feat = torch.randn(8, 768)   # 文本特征

# 初始化模型
fusion_model = ImageTextFusion(feature_dim=768, num_heads=8)

# 前向传播
fused_output = fusion_model(image_feat, text_feat)

print(fused_output.shape)  # 输出形状应为 [8, 768]

代码解析:

text_proj 和 image_proj:分别用于将文本特征和图片特征映射到相同的特征空间,以便进行特征融合。

MultiheadAttention:这是 PyTorch 提供的多头注意力机制。我们将文本特征作为 Query,图片特征作为 Key 和 Value,通过注意力机制,使得每个文本单词从图片特征中获取相关的信息。

image_feat.expand(text_feat.size(0), -1):扩展图片特征,使其与文本特征具有相同的形状 [8, 768]。

unsqueeze(1):将特征的维度增加一个维度,符合 MultiheadAttention 的输入格式。

squeeze(1):将多头注意力输出的维度恢复到 [8, 768]。

总结:

这种方法使用了注意力机制,让文本特征能够从图片特征中获取信息,从而实现图文融合。注意力机制的优势在于,它可以为每个文本单词动态地分配不同的图片信息。

相关推荐
dreadp37 分钟前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
梦云澜43 分钟前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
Tester_孙大壮1 小时前
第32章 测试驱动开发(TDD)的原理、实践、关联与争议(Python 版)
驱动开发·python·tdd
远洋录1 小时前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董2 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师3 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)4 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
小王子10244 小时前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui4 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20255 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习