一句话爆改三维场景!斯坦福吴佳俊团队新作:场景语言,智能补全文本到3D的场景理解

从文字生成三维世界的场景有多难?

试想一下,如果我们要 "生成复活节岛的摩艾石像",AI 怎么才能理解我们的需求,然后生成一个精美的三维场景?

斯坦福的研究团队提出了一个创新性解决方案:就像人类使用自然语言(natural language)进行交流,三维场景的构建需要场景语言(Scene Language)

这个新语言不仅能让 AI 理解我们的需求,更让它能够细致地将人类的描述转化为三维世界的场景。同时,它还具备编辑功能,一句简单指令就能改变场景中的元素!物体的位置、风格,现在都可以随意调整。

智能的场景理解

再比如,输入 "初始状态的国际象棋盘",模型可以自动识别并生成如下特征:

  • 64 个黑白相间的格子

  • 按规则排列的 32 个棋子

  • 每个棋子的独特造型

最终生成的 3D 场景完美还原了这些细节。

这个方法支持多种渲染方式,能适应不同的应用场景:

更具吸引力的是其编辑能力:只需一句指令,就能调整场景中的元素:

支持图片输入

动态生成

不仅限于静态,Scene Language 还能生成动态场景,让 3D 世界生动起来。

技术亮点

Scene Language 的核心在于三大组件的融合:

  1. 程序语言(program):用于精确描述场景结构,包括物体间的重复、层次关系;

  2. 自然语言(word):定义场景中的物体类别,提供语义层面的信息;

  3. 神经网络表征(embedding):捕捉物体的内在视觉细节。

这种组合就像给 AI 配备了一套完整的 "建筑工具",既能整体规划,又能雕琢细节。

对比传统方法的优势

与现有技术相比,Scene Language 展现出显著优势:

  • 用户偏好测试中获得 85.65% 的偏好,相比现有方法提高了近 7 倍;

  • 在物体数量控制方面,测试集中的准确率达到 100%,而现有方法只有 11%。

这一研究展示了 AI 理解和创造 3D 世界的全新可能性,期待它在游戏开发、建筑设计等领域引领新一轮的创新!

作者简介

该篇论文主要作者来自斯坦福大学吴佳俊团队。

论文一作张蕴之,斯坦福大学博士生。主要研究为视觉表征及生成。

吴佳俊,现任斯坦福大学助理教授。在麻省理工学院完成博士学位,本科毕业于清华大学姚班。

相关推荐
布列瑟农的星空1 小时前
前端都能看懂的Rust入门教程(三)——控制流语句
前端·后端·rust
汤姆yu1 小时前
基于springboot的尿毒症健康管理系统
java·spring boot·后端
暮色妖娆丶1 小时前
Spring 源码分析 单例 Bean 的创建过程
spring boot·后端·spring
野犬寒鸦1 小时前
从零起步学习JVM || 第一章:类加载器与双亲委派机制模型详解
java·jvm·数据库·后端·学习
Java编程爱好者2 小时前
Seata实现分布式事务:大白话全剖析(核心讲透AT模式)
后端
uesowys2 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
神奇小汤圆2 小时前
比MySQL快800倍的数据库:ClickHouse的性能秘密
后端
人工智能AI技术2 小时前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin2 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_2 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent