【优选算法 — 滑动窗口】最大连续1的个数 & 将 x 减到0的最小操作数


最大连续1的个数


最大连续1的个数


题目描述

题目解析

  1. 给我们一个元素全是0或者1的数组,和一个整数 k ,然后让我们在数组选出最多的 k 个0;
  2. 这里翻转最多 k 个0的意思,是翻转 0 的个数<= k,而不是一定要翻转 k 个0;
  3. 然后把这 k 个0翻转成1,翻转完成后,找出数组中,连续1的最大个数。

算法原理


如果按照这个题,直接去把0翻转成1,我们会发现这个操作非常麻烦,因为如果后续还要枚举数组中别的0,就要先把刚刚翻转过的1翻转回0,代码也不好写;

通过上述两个例子,求最大连续1的个数的过程中,我们并没有真正地对0进行翻转,所以我们是可以不用翻转的;

我们只需要在数组中,找一段元素连续为0的区域,并且0的个数不超过k即可;

换而言之,只要这段区域的0的个数不超过k,那么就是一定可以成功翻转的,我们没必要真正地去翻转。

所以上述的问题可以转换成:找出最长子数组,0的个数不超过k个;


解法一:暴力枚举 + zero计数器


  • 既然要找最长子数组,我们就固定一个起点,然后不断枚举所有0的个数不超过k的子数组;
  • 并且返回所有子数组中,长度最大的子数组即可。

在暴力枚举的过程中,我们需要定义一个变量,来计数子数组中0的个数;

我们所有的优化方法,都是建立在暴力枚举的基础上,来做优化的,所以要考虑清楚暴力枚举的要点和细节,再在这些细节和要点上总结规律,并作出优化。

如果是暴力枚举的话,此时在 right 到达合适的位置后,left++,right = left,并且重复上面的过程;

但是我们可以发现,在后续的left 向后枚举的过程中,只要 left还在前面3个1的位置,right 能到达的最远位置是不变的;

我们要对上述枚举的细节做优化。


解法二:滑动窗口


left 移动到能让 zero=2 的位置,此时只需要让 right 继续向后挪动


  1. left = 0, right =0 ;
  2. 进窗口 (right=1,无视;right = 0,zero++);
  3. 判段(zero > k) (3和4是循环)
  4. 出窗口(left = 1,无视;left = 0,zero--);
  5. 更新结果

编写代码

时间复杂度:

虽然有两层循环,但是根据实际过程,时间复杂度 O(N);

空间复杂度:

只定义了有限的变量,所以是O(1)


将 x 减到0的最小操作数


将 x 减到0的最小操作数

题目描述


转换思路:找到数组中,长度最长,且和为 sum - x 的子数组


如果我们直接按照题目的要求,每次操作都删除数组最左边,或者最右边的元素,使得 x=0,那么这道题的操作是非常麻烦的,因为能删除的方法非常多;

如果正面比较难,我们就使用"正难则反"的方法,这是非常重要的一点;

当我们计算数组两边的区间比较难找,我们可以转换思路,求中间的这一个连续的区间之和

  • 我们只需要在数组中间找一段连续的区域,这段区域所有元素之和 target 等于 sum - x 即可;
  • 题目要求的是最小操作数,所以是要找 左边区间 和 右边区间 的元素个数之和最小的情况即可;
  • 进而转换为,在这个数组中,找到一块连续的区域,这个区域的所有元素之和,等于sum-x;
  • 并且这个连续的区域是要最长的,长度设置为 len;
  • 找到最长的 len,返回 length - len 即可

解法:滑动窗口


随机定义一个数组,来发现规律

定义 sum1 变量,来标记 right 和 left 中间这段区域的和;


在 right 向后遍历的时候:

  1. 当 sum1 > target 时,固定 right,移动 left
  2. 当 sum1 = target 时,先更新 len,再移动 right,
  3. 如果出现 sum1 >= target 的情况,按照上面的步骤处理

证明 right 不需要往后移动:

此时 right 会停下,是因为刚刚好改变 sum1 和 target 的关系,再更新 len 之后,left++;

此时 left 在更新之后,left 和 right 中间的区域之和一定是小于 target 的,所以 right 不需要 --;

  1. left = 0, right =0 ;
  2. 进窗口(sum1 += num[right++]);
  3. 判断sum1 > target(注意:sum = target 是我们要的结果,而判断是用来调整结果的,所以不写=)
  4. 出窗口(sum1 -=nums[left++]),3 和 4 是循环
  5. 更新结果 (判断 sum1 是等于还是小于 target,==才更新结果);

编写代码

上述情况是因为,在刚刚好遍历完成所有数组元素,sum1 才刚好等于 target 的,此时 len虽然还是0,但是只要最终结果返回 n - len ,依旧是正确答案;

但是也有在遍历完所有数组元素,sum1 都不能等于 target 的,所以要在返回结果时判断;

而上述示例二在执行到 return 时,刚好 len 也是0,但是要返回 -1;两种情况就刚好重合了;


修改代码

​​

​​

相关推荐
界面开发小八哥6 分钟前
更高效的Java 23开发,IntelliJ IDEA助力全面升级
java·开发语言·ide·intellij-idea·开发工具
草莓base19 分钟前
【手写一个spring】spring源码的简单实现--容器启动
java·后端·spring
jiao_mrswang26 分钟前
leetcode-18-四数之和
算法·leetcode·职场和发展
Allen Bright32 分钟前
maven概述
java·maven
qystca34 分钟前
洛谷 B3637 最长上升子序列 C语言 记忆化搜索->‘正序‘dp
c语言·开发语言·算法
编程重生之路34 分钟前
Springboot启动异常 错误: 找不到或无法加载主类 xxx.Application异常
java·spring boot·后端
薯条不要番茄酱35 分钟前
数据结构-8.Java. 七大排序算法(中篇)
java·开发语言·数据结构·后端·算法·排序算法·intellij-idea
今天吃饺子40 分钟前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
是阿建吖!41 分钟前
【优选算法】二分查找
c++·算法
努力进修44 分钟前
“探索Java List的无限可能:从基础到高级应用“
java·开发语言·list