2024.11.12_大数据的诞生以及解决的问题

大数据的诞生以及解决的问题

视频一:大数据诞生的背景

原因:传统的数据处理架构无法满足海量的数据存储和计算需求

大数据的4v特性:数据量、速度、多样性、价值

视频三:区分离线处理场景和实时处理场景

区别:主要看处理的数据是有界还是无界,离线场景的数据,不会增加和减少


视频五:传统的大数据与现代的大数据区别(离线场景)

大数据典型应用以及架构改进:

  • 传统的数据仓库只能解决中小规模的数据存储与分析问题
  • 大数据的存储与计算:大数据的架构基本是天然分布式的 ,可扩展能力很强。(数据达到一定量级,大数据才能发挥实力)

大数据的两个典型的特点:

  • 分而治之,将数据打成小块,分散在各个节点中进行存储
  • 移动计算而非移动数据,数据不动,计算任务(代码文件)分发到每个节点,进行运算,然后汇总结果。

其他离线的应用场景,比如大数据的搜索与检索,图计算,数据挖掘和实时流处理等应用场景,以及相关技术细节。

基于大数据的实时流处理:

分布式消息队列,抗压性能很好,能够承担很多压力,如果压力过大,可以拓展新增的节点。

视频六:大数据生态全览

视频七:HDFS概述

1、HDFS简介(概念和优缺点)

HDFS核心子项目有三个:

  • hadoop 、yum、mapreduce
优点 缺点
高容错、高可用、高拓展 不适合低延迟数据访问
海量的数据存储 不支持并发写入
构建成本低安全可靠(构建在廉价的商用服务器上、提供了容错和恢复机制------数据备份三份) 不适合大量小文件存储
适合大规模离线批处理 不支持文件随机修改

2、HDFS原理

系统架构

存储机制

--block块存储;--元数据存储;

读写操作

安全模式

高可用

HDFS高可用:

HDFS文件命令:

hadoop fs

hdfs dfs

大部分用法和linux shell 类似,可通过help 查看帮助。

HDFS运维管理

相关推荐
打码人的日常分享1 天前
运维服务方案,运维巡检方案,运维安全保障方案文件
大数据·运维·安全·word·安全架构
半夏陌离1 天前
SQL 拓展指南:不同数据库差异对比(MySQL/Oracle/SQL Server 基础区别)
大数据·数据库·sql·mysql·oracle·数据库架构
A小弈同学1 天前
新规则,新游戏:AI时代下的战略重构与商业实践
大数据·人工智能·重构·降本增效·电子合同
字节跳动数据平台1 天前
一客一策:Data Agent 如何重构大模型时代的智能营销?
大数据·agent
用户Taobaoapi20141 天前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析
镭眸1 天前
因泰立科技:用激光雷达重塑智能工厂物流生态
大数据·人工智能·科技
IT研究室1 天前
大数据毕业设计选题推荐-基于大数据的贵州茅台股票数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
Lx3521 天前
Hadoop异常处理机制:优雅处理失败任务
大数据·hadoop
小嵌同学1 天前
Linux:malloc背后的实现细节
大数据·linux·数据库
IT毕设梦工厂1 天前
大数据毕业设计选题推荐-基于大数据的国家基站整点数据分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·spark·毕业设计·源码·数据可视化