2024.11.12_大数据的诞生以及解决的问题

大数据的诞生以及解决的问题

视频一:大数据诞生的背景

原因:传统的数据处理架构无法满足海量的数据存储和计算需求

大数据的4v特性:数据量、速度、多样性、价值

视频三:区分离线处理场景和实时处理场景

区别:主要看处理的数据是有界还是无界,离线场景的数据,不会增加和减少


视频五:传统的大数据与现代的大数据区别(离线场景)

大数据典型应用以及架构改进:

  • 传统的数据仓库只能解决中小规模的数据存储与分析问题
  • 大数据的存储与计算:大数据的架构基本是天然分布式的 ,可扩展能力很强。(数据达到一定量级,大数据才能发挥实力)

大数据的两个典型的特点:

  • 分而治之,将数据打成小块,分散在各个节点中进行存储
  • 移动计算而非移动数据,数据不动,计算任务(代码文件)分发到每个节点,进行运算,然后汇总结果。

其他离线的应用场景,比如大数据的搜索与检索,图计算,数据挖掘和实时流处理等应用场景,以及相关技术细节。

基于大数据的实时流处理:

分布式消息队列,抗压性能很好,能够承担很多压力,如果压力过大,可以拓展新增的节点。

视频六:大数据生态全览

视频七:HDFS概述

1、HDFS简介(概念和优缺点)

HDFS核心子项目有三个:

  • hadoop 、yum、mapreduce
优点 缺点
高容错、高可用、高拓展 不适合低延迟数据访问
海量的数据存储 不支持并发写入
构建成本低安全可靠(构建在廉价的商用服务器上、提供了容错和恢复机制------数据备份三份) 不适合大量小文件存储
适合大规模离线批处理 不支持文件随机修改

2、HDFS原理

系统架构

存储机制

--block块存储;--元数据存储;

读写操作

安全模式

高可用

HDFS高可用:

HDFS文件命令:

hadoop fs

hdfs dfs

大部分用法和linux shell 类似,可通过help 查看帮助。

HDFS运维管理

相关推荐
Rverdoser32 分钟前
电脑硬盘分几个区好
大数据
傻啦嘿哟33 分钟前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
Theodore_102240 分钟前
大数据(2) 大数据处理架构Hadoop
大数据·服务器·hadoop·分布式·ubuntu·架构
簌簌曌1 小时前
CentOS7 + JDK8 虚拟机安装与 Hadoop + Spark 集群搭建实践
大数据·hadoop·spark
Theodore_10223 小时前
大数据(1) 大数据概述
大数据·hadoop·数据分析·spark·hbase
Aurora_NeAr4 小时前
Apache Spark详解
大数据·后端·spark
IvanCodes5 小时前
六、Sqoop 导出
大数据·hadoop·sqoop
代码匠心6 小时前
从零开始学Flink:揭开实时计算的神秘面纱
java·大数据·后端·flink
归去_来兮7 小时前
图神经网络(GNN)模型的基本原理
大数据·人工智能·深度学习·图神经网络·gnn