torch.stack 张量维度的变化

torch.stack 是 PyTorch 中用于将一系列张量沿一个新的维度堆叠的函数。与 torch.cat 不同的是,torch.stack会在指定的维度上增加一个新的维度,而不是将张量直接拼接。

基本用法

语法:

复制代码
torch.stack(tensors, dim=0)
  • tensors: 一个张量列表,包含多个形状相同的张量(shape 必须相同)。
  • dim: 新增维度的位置,默认是 0

举例说明

假设有三个形状为 (2, 3) 的张量:

复制代码
import torch

a = torch.tensor([[1, 2, 3], [4, 5, 6]])
b = torch.tensor([[7, 8, 9], [10, 11, 12]])
c = torch.tensor([[13, 14, 15], [16, 17, 18]])

沿 dim=0 堆叠

复制代码
stacked = torch.stack([a, b, c], dim=0)
print(stacked.shape)  # torch.Size([3, 2, 3])
  • 在维度 0 上增加一个新的维度,原始的 (2, 3) 形状变成 (3, 2, 3)
  • stacked 的第 0 维度有 3 个元素,对应原来的 a, b, c 张量。

沿 dim=1 堆叠

复制代码
stacked = torch.stack([a, b, c], dim=1)
print(stacked.shape)  # torch.Size([2, 3, 3])
  • 新的维度插入到原第 1 维的位置。
  • stacked 的第 1 维度有 3 个元素,对应原来的 a, b, c 张量。

沿 dim=2 堆叠

复制代码
stacked = torch.stack([a, b, c], dim=2)
print(stacked.shape)  # torch.Size([2, 3, 3])
  • 新的维度插入到原第 2 维的位置,形状变为 (2, 3, 3)

torch.stack 的形状变化总结

假设堆叠前的每个张量形状是 (A, B, C),在 dim=0dim=1dim=2 堆叠后的形状分别为:

  • dim=0: (N, A, B, C)
  • dim=1: (A, N, B, C)
  • dim=2: (A, B, N, C)

其中 N 是堆叠的张量数量。

和torch.cat函数的区别:

cat:在指定维度拼接多个张量。不增加维度。

复制代码
c1 = torch.tensor([[1, 2], [3, 4]])
c2 = torch.tensor([[5, 6], [7, 8]])
c_cat = torch.cat([c1, c2], dim=0)  # shape (4, 2)
相关推荐
LinQingYanga5 分钟前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip7 分钟前
过去24小时AI创业趋势分析
人工智能
SEO_juper7 分钟前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo
pp起床9 分钟前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
方见华Richard11 分钟前
自指-认知几何架构 可行性边界白皮书(务实版)
人工智能·经验分享·交互·原型模式·空间计算
冬奇Lab15 分钟前
AI时代的"工具自由":我是如何进入细糠时代的
人工智能·ai编程
CODECOLLECT40 分钟前
技术解析|MDM移动设备管理系统无终身买断制度的底层逻辑
人工智能
北京迅为44 分钟前
《【北京迅为】itop-3568开发板NPU使用手册》- 第 7章 使用RKNN-Toolkit-lite2
linux·人工智能·嵌入式·npu
我是一只puppy1 小时前
使用AI进行代码审查
javascript·人工智能·git·安全·源代码管理
阿杰学AI1 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer