torch.stack 张量维度的变化

torch.stack 是 PyTorch 中用于将一系列张量沿一个新的维度堆叠的函数。与 torch.cat 不同的是,torch.stack会在指定的维度上增加一个新的维度,而不是将张量直接拼接。

基本用法

语法:

复制代码
torch.stack(tensors, dim=0)
  • tensors: 一个张量列表,包含多个形状相同的张量(shape 必须相同)。
  • dim: 新增维度的位置,默认是 0

举例说明

假设有三个形状为 (2, 3) 的张量:

复制代码
import torch

a = torch.tensor([[1, 2, 3], [4, 5, 6]])
b = torch.tensor([[7, 8, 9], [10, 11, 12]])
c = torch.tensor([[13, 14, 15], [16, 17, 18]])

沿 dim=0 堆叠

复制代码
stacked = torch.stack([a, b, c], dim=0)
print(stacked.shape)  # torch.Size([3, 2, 3])
  • 在维度 0 上增加一个新的维度,原始的 (2, 3) 形状变成 (3, 2, 3)
  • stacked 的第 0 维度有 3 个元素,对应原来的 a, b, c 张量。

沿 dim=1 堆叠

复制代码
stacked = torch.stack([a, b, c], dim=1)
print(stacked.shape)  # torch.Size([2, 3, 3])
  • 新的维度插入到原第 1 维的位置。
  • stacked 的第 1 维度有 3 个元素,对应原来的 a, b, c 张量。

沿 dim=2 堆叠

复制代码
stacked = torch.stack([a, b, c], dim=2)
print(stacked.shape)  # torch.Size([2, 3, 3])
  • 新的维度插入到原第 2 维的位置,形状变为 (2, 3, 3)

torch.stack 的形状变化总结

假设堆叠前的每个张量形状是 (A, B, C),在 dim=0dim=1dim=2 堆叠后的形状分别为:

  • dim=0: (N, A, B, C)
  • dim=1: (A, N, B, C)
  • dim=2: (A, B, N, C)

其中 N 是堆叠的张量数量。

和torch.cat函数的区别:

cat:在指定维度拼接多个张量。不增加维度。

复制代码
c1 = torch.tensor([[1, 2], [3, 4]])
c2 = torch.tensor([[5, 6], [7, 8]])
c_cat = torch.cat([c1, c2], dim=0)  # shape (4, 2)
相关推荐
endcy201619 小时前
基于Spring AI的RAG和智能体应用实践
人工智能·ai·系统架构
Blossom.11819 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
FPGA小迷弟19 小时前
ChatGPT回答用AI怎么怎么赚钱
大数据·人工智能
轻微的风格艾丝凡19 小时前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn
月下倩影时20 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
PixelMind20 小时前
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
人工智能·生成对抗网络·扩散模型·图像复原
说私域20 小时前
从裂变能力竞争到技术水平竞争:开源AI智能名片链动2+1模式S2B2C商城小程序对微商企业竞争格局的重塑
人工智能·小程序·开源
xybDIY20 小时前
基于 Tuya.AI 开源的大模型构建智能聊天机器人
人工智能·机器人·开源
这张生成的图像能检测吗20 小时前
(论文速读)基于DCP-MobileViT网络的焊接缺陷识别
图像处理·深度学习·计算机视觉·可视化·缺陷识别·焊缝缺陷
智慧地球(AI·Earth)1 天前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi