边缘提取函数 [OPENCV--2]

OPENCV中最常用的边界检测是CANNY函数

下面展示它的用法

  • 通常输入一个灰度图像(边界一般和颜色无关)这样也可以简化运算
  • cv::Canny(inmat , outmat , therhold1, therhold2 ) 第一个参数是输入的灰度图像,第二个是输出的图像
  • 这两个参数都是引用类型,很方便
  • 下面的两个是门槛,一个是低阈值门槛,一个是高阈值门槛,只有高于低阈值的才算边界,高于高阈值的算是强边界
  • 你说值怎么取?CV本来就是很唯心的学科,这些参数肯定要自己调试了,在不同的实用环境中值不一样
  • 一般来说,保证TH2是TH 1的两倍到三倍即可
cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>

int main() {
    cv::utils::logging::setLogLevel(cv::utils::logging::LOG_LEVEL_ERROR);

    // 读取PNG图像
    cv::Mat image = cv::imread("PIC.jpg", cv::IMREAD_COLOR);
    if (image.empty()) {
        std::cerr << "无法读取图像文件" << std::endl;
        return -1;
    }

    // 转换为灰度图像
    cv::Mat gray;
    cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);

    // 初始化边缘图像向量
    std::vector<cv::Mat> edges(5);  // 初始化大小为5的向量

    for (int i = 0; i < 5; i++) {
        // 应用边缘检测(Canny)
        cv::Canny(gray, edges[i], i * 100, 150, 3);

        // 创建并调整窗口大小
        cv::namedWindow("edges" + std::to_string(i), cv::WINDOW_NORMAL);  // 使用WINDOW_NORMAL标志,允许调整窗口大小
        cv::resizeWindow("edges" + std::to_string(i), 800, 600);  // 调整窗口大小为800x600

        // 显示边缘图像
        cv::imshow("edges" + std::to_string(i), edges[i]);
    }

    cv::waitKey();

    return 0;
}

下面是程序的执行效果,可以看出,随着下门槛的提高,边界越来越少

可见

1,随着下阈值的提高,强边缘被筛选出来

2,随着下阈值的提高,边缘信息越来越少

下面我们修改上阈值看看

cpp 复制代码
  cv::Canny(gray, edges[i], i * 100, 150*i, 3);

0号图片是上门槛为0 的情况,所以噪音很多,上门槛不是越高越好,可见2,3,4几乎没有信息可言

就这样。ψ(`∇´)ψ

相关推荐
Clarence Liu6 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型6 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室6 小时前
AI4Science开源汇总
人工智能
CeshirenTester6 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis6 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs6 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷6 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极6 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发
冰西瓜6007 小时前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
模型时代7 小时前
Claude AI 发现 500 个高危软件漏洞
人工智能