高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十三)图优化SLAM的本质

一、直白解释slam与图优化的结合

我从b站上学习理解的这个概念。

视频的大概位置是1个小时以后,在第75min到80min之间。图优化SLAM是怎么一回事。

slam本身是有运动方程 的,也就是运动状态递推 方程,也就是预测过程 。通过t1时刻,可以递推预测t2时刻的传感器位置。

重点来了:

我通过这个预测的t2时刻的位置,可以预测出,在t1时刻所建地图中特征在t2时刻的位置。

t1时刻的位置有了,观测的特征有了。对t2时刻的位置预测 可以通过运动方程递推出来。那么我就可以基于对t2时刻位姿的估计,基于这个视角,估测出此时在t1时刻时地图中那些特征点,在t2时刻时,在地图中的位置。

对t2时刻特征位置的估计有了,对t2时刻特征位置的观测有了,两者之间的差异,就是我们需要最小二乘优化的。
slam不是分为定位建图两部分嘛,我通过t2时刻定位的预测(视角,位姿),可以推断出,t2时刻可能建立的地图的样子(或者说,t1时刻的特征点,在预测t2时刻位置之后,这些特征点,在t2时刻观察时这些特征点应该在的位置)。

这个预测的地图,在理论上------如果预测准确的话,应该跟t2时刻观测的地图是一样的。

吐过位姿预测观察的地图跟实际观测的地图应该是一样的,如果不一样,这个误差就需要优化了。

这就是slam跟图优化结合的点位

二、对比案例辅助理解

回顾我们之前的图优化案例:我们有一个非线性的待拟合曲线。

基于预测的a,b,c,计算出预测的结果 ,再跟实际的观测数据 yi对比,计算误差

然后通过雅可比更新待估计的参数。使模型参数得到优化更新。

类比:

对数据的预测 有了,对数据的观测也有了。两者之间的差异最小化,就是位姿更新误差最小化。

三、图优化优势

只要把残差构建定义出来,

然后把观测数据丢给优化器就不用管了。

ceres如上,g2o如下

把待优化参数交给点,把观测数据交给边。

相关推荐
zhuyixiangyyds7 小时前
day21和day22学习Pandas库
笔记·学习·pandas
每次的天空7 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
背影疾风9 小时前
C++学习之路:指针基础
c++·学习
苏克贝塔9 小时前
CMake学习--Window下VSCode 中 CMake C++ 代码调试操作方法
c++·vscode·学习
odoo中国10 小时前
深度学习 Deep Learning 第15章 表示学习
人工智能·深度学习·学习·表示学习
电星托马斯10 小时前
C++中顺序容器vector、list和deque的使用方法
linux·c语言·c++·windows·笔记·学习·程序人生
清晨朝暮10 小时前
【算法学习计划】贪心算法(下)
学习
深蓝学院11 小时前
闭环SOTA!北航DiffAD:基于扩散模型实现端到端自动驾驶「多任务闭环统一」
人工智能·机器学习·自动驾驶
yanxy51212 小时前
【TS学习】(18)分发逆变推断
前端·学习·typescript
Hellyc12 小时前
SpringMVC响应数据:页面跳转与回写数据
java·前端·学习