高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十三)图优化SLAM的本质

一、直白解释slam与图优化的结合

我从b站上学习理解的这个概念。

视频的大概位置是1个小时以后,在第75min到80min之间。图优化SLAM是怎么一回事。

slam本身是有运动方程 的,也就是运动状态递推 方程,也就是预测过程 。通过t1时刻,可以递推预测t2时刻的传感器位置。

重点来了:

我通过这个预测的t2时刻的位置,可以预测出,在t1时刻所建地图中特征在t2时刻的位置。

t1时刻的位置有了,观测的特征有了。对t2时刻的位置预测 可以通过运动方程递推出来。那么我就可以基于对t2时刻位姿的估计,基于这个视角,估测出此时在t1时刻时地图中那些特征点,在t2时刻时,在地图中的位置。

对t2时刻特征位置的估计有了,对t2时刻特征位置的观测有了,两者之间的差异,就是我们需要最小二乘优化的。
slam不是分为定位建图两部分嘛,我通过t2时刻定位的预测(视角,位姿),可以推断出,t2时刻可能建立的地图的样子(或者说,t1时刻的特征点,在预测t2时刻位置之后,这些特征点,在t2时刻观察时这些特征点应该在的位置)。

这个预测的地图,在理论上------如果预测准确的话,应该跟t2时刻观测的地图是一样的。

吐过位姿预测观察的地图跟实际观测的地图应该是一样的,如果不一样,这个误差就需要优化了。

这就是slam跟图优化结合的点位

二、对比案例辅助理解

回顾我们之前的图优化案例:我们有一个非线性的待拟合曲线。

基于预测的a,b,c,计算出预测的结果 ,再跟实际的观测数据 yi对比,计算误差

然后通过雅可比更新待估计的参数。使模型参数得到优化更新。

类比:

对数据的预测 有了,对数据的观测也有了。两者之间的差异最小化,就是位姿更新误差最小化。

三、图优化优势

只要把残差构建定义出来,

然后把观测数据丢给优化器就不用管了。

ceres如上,g2o如下

把待优化参数交给点,把观测数据交给边。

相关推荐
资源开发与学习2 天前
机器人运动规划源码解析
机器人
2303_Alpha2 天前
SpringBoot
笔记·学习
萘柰奈2 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽2 天前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫2 天前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
-点点-2 天前
电磁兼容性(EMC)法规
自动驾驶
向阳花开_miemie2 天前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿2 天前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng2 天前
量子计算学习(第十四周周报)
学习·量子计算
Hello_Embed3 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件