高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十三)图优化SLAM的本质

一、直白解释slam与图优化的结合

我从b站上学习理解的这个概念。

视频的大概位置是1个小时以后,在第75min到80min之间。图优化SLAM是怎么一回事。

slam本身是有运动方程 的,也就是运动状态递推 方程,也就是预测过程 。通过t1时刻,可以递推预测t2时刻的传感器位置。

重点来了:

我通过这个预测的t2时刻的位置,可以预测出,在t1时刻所建地图中特征在t2时刻的位置。

t1时刻的位置有了,观测的特征有了。对t2时刻的位置预测 可以通过运动方程递推出来。那么我就可以基于对t2时刻位姿的估计,基于这个视角,估测出此时在t1时刻时地图中那些特征点,在t2时刻时,在地图中的位置。

对t2时刻特征位置的估计有了,对t2时刻特征位置的观测有了,两者之间的差异,就是我们需要最小二乘优化的。
slam不是分为定位建图两部分嘛,我通过t2时刻定位的预测(视角,位姿),可以推断出,t2时刻可能建立的地图的样子(或者说,t1时刻的特征点,在预测t2时刻位置之后,这些特征点,在t2时刻观察时这些特征点应该在的位置)。

这个预测的地图,在理论上------如果预测准确的话,应该跟t2时刻观测的地图是一样的。

吐过位姿预测观察的地图跟实际观测的地图应该是一样的,如果不一样,这个误差就需要优化了。

这就是slam跟图优化结合的点位

二、对比案例辅助理解

回顾我们之前的图优化案例:我们有一个非线性的待拟合曲线。

基于预测的a,b,c,计算出预测的结果 ,再跟实际的观测数据 yi对比,计算误差

然后通过雅可比更新待估计的参数。使模型参数得到优化更新。

类比:

对数据的预测 有了,对数据的观测也有了。两者之间的差异最小化,就是位姿更新误差最小化。

三、图优化优势

只要把残差构建定义出来,

然后把观测数据丢给优化器就不用管了。

ceres如上,g2o如下

把待优化参数交给点,把观测数据交给边。

相关推荐
小Tomkk1 小时前
2025年PMP 学习十五 第10章 项目资源管理
学习·pmp·项目pmp
oceanweave2 小时前
【K8S学习之生命周期钩子】详细了解 postStart 和 preStop 生命周期钩子
学习·kubernetes
Blossom.1182 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
黄暄4 小时前
初识计算机网络。计算机网络基本概念,分类,性能指标
笔记·学习·计算机网络·考研
梅子酱~5 小时前
Vue 学习随笔系列二十三 -- el-date-picker 组件
前端·vue.js·学习
Alice-YUE5 小时前
【HTML5学习笔记1】html标签(上)
前端·笔记·学习·html·html5
jerry6096 小时前
LLM笔记(五)概率论
人工智能·笔记·学习·概率论
硅谷秋水6 小时前
学习以任务为中心的潜动作,随地采取行动
人工智能·深度学习·计算机视觉·语言模型·机器人
虹科智能自动化6 小时前
虹科应用 | 探索PCAN卡与医疗机器人的革命性结合
机器人·工业4.0·pcan
threelab8 小时前
12.three官方示例+编辑器+AI快速学习webgl_buffergeometry_indexed
学习·编辑器·webgl