高翔【自动驾驶与机器人中的SLAM技术】学习笔记(十三)图优化SLAM的本质

一、直白解释slam与图优化的结合

我从b站上学习理解的这个概念。

视频的大概位置是1个小时以后,在第75min到80min之间。图优化SLAM是怎么一回事。

slam本身是有运动方程 的,也就是运动状态递推 方程,也就是预测过程 。通过t1时刻,可以递推预测t2时刻的传感器位置。

重点来了:

我通过这个预测的t2时刻的位置,可以预测出,在t1时刻所建地图中特征在t2时刻的位置。

t1时刻的位置有了,观测的特征有了。对t2时刻的位置预测 可以通过运动方程递推出来。那么我就可以基于对t2时刻位姿的估计,基于这个视角,估测出此时在t1时刻时地图中那些特征点,在t2时刻时,在地图中的位置。

对t2时刻特征位置的估计有了,对t2时刻特征位置的观测有了,两者之间的差异,就是我们需要最小二乘优化的。
slam不是分为定位建图两部分嘛,我通过t2时刻定位的预测(视角,位姿),可以推断出,t2时刻可能建立的地图的样子(或者说,t1时刻的特征点,在预测t2时刻位置之后,这些特征点,在t2时刻观察时这些特征点应该在的位置)。

这个预测的地图,在理论上------如果预测准确的话,应该跟t2时刻观测的地图是一样的。

吐过位姿预测观察的地图跟实际观测的地图应该是一样的,如果不一样,这个误差就需要优化了。

这就是slam跟图优化结合的点位

二、对比案例辅助理解

回顾我们之前的图优化案例:我们有一个非线性的待拟合曲线。

基于预测的a,b,c,计算出预测的结果 ,再跟实际的观测数据 yi对比,计算误差

然后通过雅可比更新待估计的参数。使模型参数得到优化更新。

类比:

对数据的预测 有了,对数据的观测也有了。两者之间的差异最小化,就是位姿更新误差最小化。

三、图优化优势

只要把残差构建定义出来,

然后把观测数据丢给优化器就不用管了。

ceres如上,g2o如下

把待优化参数交给点,把观测数据交给边。

相关推荐
循环过三天5 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
昌sit!6 小时前
Linux系统性基础学习笔记
linux·笔记·学习
学会沉淀。7 小时前
设备如何“开口说话”?
学习
m0_591338918 小时前
day10数组的学习
学习
仰望—星空8 小时前
MiniEngine学习笔记 : CommandListManager
c++·windows·笔记·学习·cg·direct3d
电子云与长程纠缠9 小时前
Blender入门学习09 - 制作动画
学习·blender
电子云与长程纠缠9 小时前
Blender入门学习10 - 曲线绘制
学习·blender
下午见。9 小时前
C语言结构体入门:定义、访问与传参全解析
c语言·笔记·学习
im_AMBER9 小时前
React 16
前端·笔记·学习·react.js·前端框架
EVERSPIN9 小时前
MCU微控制器,N32H47x高性能MCU机器人关节控制方案
单片机·嵌入式硬件·机器人·mcu微控制器