深度学习基础—Seq2Seq模型

1.Seq2Seq模型

假设我们进行机器翻译任务,输入一个法语句子:"Jane visite I'Afrique en septembre.",将它翻译成一个英语:"Jane is visiting Africa in September."。

seq2seq模型有编码器和解码器组成,编码器是RNN网络,可以是GRU单元,也可以是LSTM,如上编号1 所示。编码器接受所有词向量后,得到一个输出向量,将输出向量输入到解码器中。

解码器每次输出一个翻译后的单词,一直到输出序列的结尾或者句子结尾标记。解码器的结构和编码器不太一样,它把每次生成的标记都传递到下一个单元中来进行预测,就像之前用语言模型合成文本时一样。

深度学习基础---序列采样https://blog.csdn.net/sniper_fandc/article/details/143457214?fromshare=blogdetail&sharetype=blogdetail&sharerId=143457214&sharerefer=PC&sharesource=sniper_fandc&sharefrom=from_link

类似翻译任务,我们也可以用相似的结构做图片描述任务。假设输入猫咪图片,经过预训练的AlexNet网络(上图编号2)作为编码器,让其学习图片的编码,去掉最后的softmax单元(编号3),AlexNet网络会输出一个4096维的特征向量。接着把这个向量输入到RNN中(编号4),RNN要做的就是生成图像的描述,和seq2seq解码器的结构相似,最终可以输出图片的描述。

网络的结构已经了解,但是网络如何根据结果优化参数呢?也就是生成的翻译或描述的句子,怎么能确定这个句子就是我们最希望得到的?

2.选择最可能的句子

用绿色(编号2)表示encoder网络,用紫色(编号3)表示decoder网络。decoder网络和编号4的语言模型几乎一模一样,机器翻译模型其实和语言模型非常相似,不同在于语言模型总是以零向量开始,而encoder网络会计算出一系列向量来表示输入的句子。decoder网络就可以以encoder网络的输出开始,而不是以零向量开始,所以它叫做条件语言模型(conditional language model)。相比语言模型,输出任意句子的概率,翻译模型会输出句子的英文翻译。

现在我们可能得到4条翻译后的语句,如上图所示。显然,第一个句子最好,但是并不是从得到的分布中进行随机取样,而是要找到一个英语句子使得条件概率最大化,即上图编号1的公式。现在我们希望找到一种算法,可以使条件概率最大化,那是否可以使用贪心算法呢?

假设贪心算法挑选出了"Jane is"作为前两个词,因为在英语中going更加常见,于是对于法语句子来说"Jane is going"相比"Jane is visiting"会有更高的概率作为翻译,但在模型中这不是一个最好的选择。

而且,词典中单词有很多,词组也有很多,但是我们不能去计算每一种组合的可能性,因为这样的组合数是指数级的。因此我们会采用近似的搜索算法,也就是下一篇博客的集束搜索。

相关推荐
巷9551 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网30 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong838 分钟前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶1 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈1 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon2 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V2 小时前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能2 小时前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能