昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

1. 载入与处理数据集

在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证集,以确保训练和验证过程中模型的性能得到充分评估。

2. 加载GPT序列分类模型,设置为二分类

在处理数据后,我们使用了OpenAIGPTForSequenceClassification模型,基于GPT模型进行文本分类。我们将模型设置为二分类任务,适应情感分类问题的需求。

以下是模型的加载与配置:

python 复制代码
from mindnlp.transformers import OpenAIGPTForSequenceClassification

# 加载GPT模型并设置为二分类
model = OpenAIGPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)

# 配置pad_token_id并调整token embedding
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

3. 设置训练与评估指标

为了对模型进行训练和评估,我们需要定义适当的训练和评估指标。在此步骤中,我们选择了适用于情感分类任务的标准指标,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)等。

4. 最后的训练和评估结果

经过模型训练和评估后,我们得到了最终的结果。该模型能够有效地对IMDB数据集中的文本进行情感分类,并输出相关的评估指标。


通过上述步骤,我们使用MindSpore平台和GPT模型实现了情感分类任务,能够有效地对文本进行情绪分析,提供情感分类的预测结果。这一过程展示了GPT模型在自然语言处理任务中的应用,尤其是在情感分析方面的表现。

相关推荐
Jina AI3 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
瓦特what?5 小时前
关于C++的#include的超超超详细讲解
java·开发语言·数据结构·c++·算法·信息可视化·数据挖掘
张飞的猪大数据6 小时前
OpenAI 发布了 GPT-5,有哪些新特性值得关注?国内怎么使用GPT5?
gpt·chatgpt
楚韵天工1 天前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘
AI大模型1 天前
AI大模型选择指南:从ChatGPT到国产新秀,一文看懂如何选对你的AI助手
gpt·程序员·llm
OpenC++1 天前
【机器学习】核心分类及详细介绍
人工智能·机器学习·分类
努力还债的学术吗喽1 天前
2020 GPT3 原文 Language Models are Few-Shot Learners 精选注解
gpt·大模型·llm·gpt-3·大语言模型·few-shot·zero-shot
盼小辉丶1 天前
Transformer实战(11)——从零开始构建GPT模型
gpt·深度学习·transformer
思通数据2 天前
AI视频监控:重构安防行业智能化新生态
人工智能·安全·目标检测·机器学习·计算机视觉·重构·数据挖掘
Blossom.1182 天前
把大模型当“温度计”——基于 LLM 的分布式系统异常根因定位实战
人工智能·python·深度学习·机器学习·自然语言处理·分类·bert