昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

1. 载入与处理数据集

在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证集,以确保训练和验证过程中模型的性能得到充分评估。

2. 加载GPT序列分类模型,设置为二分类

在处理数据后,我们使用了OpenAIGPTForSequenceClassification模型,基于GPT模型进行文本分类。我们将模型设置为二分类任务,适应情感分类问题的需求。

以下是模型的加载与配置:

python 复制代码
from mindnlp.transformers import OpenAIGPTForSequenceClassification

# 加载GPT模型并设置为二分类
model = OpenAIGPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)

# 配置pad_token_id并调整token embedding
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

3. 设置训练与评估指标

为了对模型进行训练和评估,我们需要定义适当的训练和评估指标。在此步骤中,我们选择了适用于情感分类任务的标准指标,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)等。

4. 最后的训练和评估结果

经过模型训练和评估后,我们得到了最终的结果。该模型能够有效地对IMDB数据集中的文本进行情感分类,并输出相关的评估指标。


通过上述步骤,我们使用MindSpore平台和GPT模型实现了情感分类任务,能够有效地对文本进行情绪分析,提供情感分类的预测结果。这一过程展示了GPT模型在自然语言处理任务中的应用,尤其是在情感分析方面的表现。

相关推荐
人大博士的交易之路5 小时前
今日行情明日机会——20250606
大数据·数学建模·数据挖掘·数据分析·涨停回马枪
产品何同学6 小时前
数据分析后台设计指南:实战案例解析与5大设计要点总结
数据挖掘·数据分析·产品经理·墨刀·原型设计·后台管理系统·数据分析后台
lilye668 小时前
精益数据分析(95/126):Socialight的定价转型启示——B2B商业模式的价格策略与利润优化
人工智能·数据挖掘·数据分析
阿部多瑞 ABU9 小时前
# 从底层架构到应用实践:为何部分大模型在越狱攻击下失守?
gpt·安全·ai·自然语言处理
电商API_1800790524713 小时前
构建高效可靠的电商 API:设计原则与实践指南
运维·服务器·爬虫·数据挖掘·网络爬虫
阿部多瑞 ABU14 小时前
大模型安全测试报告:千问、GPT 全系列、豆包、Claude 表现优异,DeepSeek、Grok-3 与 Kimi 存在安全隐患
gpt·安全·ai
拓端研究室TRL18 小时前
PySpark、Plotly全球重大地震数据挖掘交互式分析及动态可视化研究
人工智能·plotly·数据挖掘
思通数科多模态大模型20 小时前
重构城市应急指挥布控策略 ——无人机智能视频监控的破局之道
人工智能·深度学习·安全·重构·数据挖掘·音视频·无人机
十三画者20 小时前
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
python·机器学习·数据挖掘·数据分析·r语言·数据可视化
FrankHuang8881 天前
使用高斯朴素贝叶斯算法对鸢尾花数据集进行分类
算法·机器学习·ai·分类