昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

1. 载入与处理数据集

在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证集,以确保训练和验证过程中模型的性能得到充分评估。

2. 加载GPT序列分类模型,设置为二分类

在处理数据后,我们使用了OpenAIGPTForSequenceClassification模型,基于GPT模型进行文本分类。我们将模型设置为二分类任务,适应情感分类问题的需求。

以下是模型的加载与配置:

python 复制代码
from mindnlp.transformers import OpenAIGPTForSequenceClassification

# 加载GPT模型并设置为二分类
model = OpenAIGPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)

# 配置pad_token_id并调整token embedding
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

3. 设置训练与评估指标

为了对模型进行训练和评估,我们需要定义适当的训练和评估指标。在此步骤中,我们选择了适用于情感分类任务的标准指标,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)等。

4. 最后的训练和评估结果

经过模型训练和评估后,我们得到了最终的结果。该模型能够有效地对IMDB数据集中的文本进行情感分类,并输出相关的评估指标。


通过上述步骤,我们使用MindSpore平台和GPT模型实现了情感分类任务,能够有效地对文本进行情绪分析,提供情感分类的预测结果。这一过程展示了GPT模型在自然语言处理任务中的应用,尤其是在情感分析方面的表现。

相关推荐
STLearner1 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
电商API大数据接口开发Cris5 小时前
淘宝 API 关键词搜索接口深度解析:请求参数、签名机制与性能优化
前端·数据挖掘·api
致Great12 小时前
DeepSeek-V3.2技术报告解读:开源大模型的逆袭之战——如何用10%算力追平GPT-5
人工智能·gpt·开源·大模型·agent·智能体
天天讯通13 小时前
智能外呼:降运营成本、优客户体验,数据分析来助力
数据挖掘·数据分析
黑客思维者14 小时前
重塑信任与效率:Salesforce Einstein GPT 客服体系深度案例研究
人工智能·gpt·llm·客服系统·salesforce
山土成旧客15 小时前
【Python学习打卡-Day17】从二分类到多分类:ROC曲线、三大平均指标与风控利器MCC/KS
python·学习·分类
技术支持者python,php15 小时前
训练分类识别器
人工智能·分类·数据挖掘
大千AI助手15 小时前
曼哈顿距离:概念、起源与应用全解析
人工智能·机器学习·数据挖掘·距离度量·曼哈顿距离·大千ai助手·街区距离
天地沧海15 小时前
各种和数据分析相关python库的介绍
python·数据挖掘·数据分析