昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

昇思大模型平台打卡体验活动:项目2基于MindSpore通过GPT实现情感分类

1. 载入与处理数据集

在情感分类任务中,我们使用了IMDB数据集,首先需要对数据进行加载和处理。由于原数据集没有验证集,我们将训练集重新划分为训练集和验证集,以确保训练和验证过程中模型的性能得到充分评估。

2. 加载GPT序列分类模型,设置为二分类

在处理数据后,我们使用了OpenAIGPTForSequenceClassification模型,基于GPT模型进行文本分类。我们将模型设置为二分类任务,适应情感分类问题的需求。

以下是模型的加载与配置:

python 复制代码
from mindnlp.transformers import OpenAIGPTForSequenceClassification

# 加载GPT模型并设置为二分类
model = OpenAIGPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)

# 配置pad_token_id并调整token embedding
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

3. 设置训练与评估指标

为了对模型进行训练和评估,我们需要定义适当的训练和评估指标。在此步骤中,我们选择了适用于情感分类任务的标准指标,如准确率(Accuracy)、精确率(Precision)、召回率(Recall)等。

4. 最后的训练和评估结果

经过模型训练和评估后,我们得到了最终的结果。该模型能够有效地对IMDB数据集中的文本进行情感分类,并输出相关的评估指标。


通过上述步骤,我们使用MindSpore平台和GPT模型实现了情感分类任务,能够有效地对文本进行情绪分析,提供情感分类的预测结果。这一过程展示了GPT模型在自然语言处理任务中的应用,尤其是在情感分析方面的表现。

相关推荐
jarvisuni36 分钟前
开发“360安全卫士”,Opus4.6把GPT5.3吊起来打了?!
人工智能·gpt·ai编程
说私域40 分钟前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
Faker66363aaa1 小时前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
Liue612312311 小时前
【YOLO11】基于C2CGA算法的金属零件涂胶缺陷检测与分类
人工智能·算法·分类
databook1 小时前
像搭积木一样思考:数据科学中的“自下而上”之道
python·数据挖掘·数据分析
啊阿狸不会拉杆2 小时前
《机器学习导论》第 9 章-决策树
人工智能·python·算法·决策树·机器学习·数据挖掘·剪枝
玄同7652 小时前
机器学习中的三大距离度量:欧式距离、曼哈顿距离、切比雪夫距离详解
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
wukangjupingbb3 小时前
Gemini 3和GPT-5.1在多模态处理上的对比
人工智能·gpt·机器学习
Katecat996633 小时前
蚊子幼虫与蛹的自动检测与分类-VFNet_R101_FPN_MS-2x_COCO实现详解
人工智能·数据挖掘
-嘟囔着拯救世界-3 小时前
【2026 最新版】OpenAI 祭出王炸 GPT-5.3-Codex!Win11 + VSCode 部署保姆级教程
vscode·gpt·chatgpt·node.js·node·codex·gpt5